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1. A SUFFICIENT CONDITION FOR SEPARABILITY OF TWO SETS OF PARAMETERS. 

As an introduction to the ideas developed under the heading 

"specific objectivity" we shall consider a simple model suggested 

in (1960) [3] for analyzing dichotomous items of a psychological test. 

A number of persons (no. v = 1,2,...,n) give one out of two 

possible answers, denoted 1 and 0, to each of a set of questions 

(no. 	 With respect to such questions each person (v) is 

assumed to be fully characterized by a scalar positive parameter, Ev , 

and similarly each question (i) is assumed to be fully characterized 

by a scalar positive parameter, c i . Furthermore all the answers 

tOa . = 

are taken to be independent stochastic variables with the probabilities 

E. 
1  

(1.2) 	pfa
vi 

= 11 = 14- c 
	

, pfa
vi 

— 01 
c. 	 C. 

v 	 v 

Consider first the case of one arbitrary person with parameter g 

answering two arbitrary items with parameters e l  and e2 . 

The possible outcomes 

= 2 

1 

3. 

1 
(1.3) 	i=1 	

0 

(1, 1) 	(1,0) 

(0,1) 	(0,0) 

form a universe D
2 with the probabilities 
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i = 2 
1 	 0 
2 
c i c 2 
	

c1 
(1+ge 1 )(1+ge2 ) 	(1+ge 1 )(14- E2 ) 

(1.4) 	i = 1 
1 

(14- c 1 )(1+c 2 ) 	(1-1-E 1 )(1.4- c2 ) 

and accordingly the probability of the combination (1,0) in the set 

(1.5) 	 V = (1,0) U (0,1) 

is 

(1.6) 

as the terms containing obviously cancel. 

An immediate consequence is that from the answers to the two 

items of any collection of n persons we may obtain an estimate of the 

ratio e 1/e 2 
that is uninfluenced by the unknown values of the parameters 

1 ,...,E n . In fact, if c out of the n persons have just one 1-answer to 

the two items then the probability of a
vl 

= 1 for b of them is given by 

the binomial distribution 

El  b c
2 	

c-b 

b
) (1.7) 	 pfblel = (c 	

c
1
+c

2 
e 
 1

+1E
2 

according to which 

(1.8) E. 
1 

E
1 

+E2 
	

c 

irrespective of the values of E n 1 

1 

0 

pf(1,0)1VI _ cl  
e 1+c 2 
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Some colleagues have argued that c itself is a stochastic variable, 

the distribution of which is a function of ; 1 ,...,; 11  and that b/c 

therefore indirectly does depend on the'unknown parameters. This 

objection, I think, is met by the observation that whichever collections 

of persons are used, in so far as the model (1.2) holds we shall, ac-

cording to (1.7), always get estimates (1.8) which statistically are 

in accordance with each other. Significant deviations serve as signing 

where and how the model breaks down. 

To the results (1.6) and (1.7) which were presented in L3], chapter X,3 

two points may be added: 1) Interchanging persons and items leads to 

the possibility of estimating the ratio of any two person parameters 

irrespective of the item parameters, but when items are few, as is usual 

in practice, the method becomes unpractical. 2) When estimates like 

(1.8) are available for different pairs of items the question of how 

to amalgamate them arises. This question does not seem to have an easy 

answer and therefore the simultaneous treatment of more items than two 

requires more refined techniques which have been outlined in [31, [51 

and [6] , being based upon a result which generalizes (1.6), viz, that 

for any given person (v) the conditional probability 

k 	
El 	k 
vl 

... E 

a
vk 

a . 

pfa vi ,...,a vk l y 
i1 

a
vi 

=
ri 	Yr(c1'''''

6k) 	' 

(1.9) 

	

y r (E1' ...,6
k
) = 	 E 	...E i 

14 ii 	
i
1 

is independent of the person parameter;. 

Similarly 

a 
ani 

(1.10) 	 pfa .,...,a .1 
11 	ni avi 	

sl _ 	  
) y

s
(;
1n v=1 
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is independent of the item parameter E i . 

The main result of this section we may formulate as 

Theorem 1. 

On the assumption that the answers 1 and 0 of different persons to 

a set of items are independent dichotomous stochastic variables 

following the distributions (7.2) it is possible to separate the 

person parameters and the item parameters E i  such that the 

person parameters are eliminated while the item parameters are being 

estimated, and vice versa. 

2. A NECESSARY CONDITION FOR SEPARABILITY. 

In view of theorem 1 the question arises whether other models 

also enjoy the separability or the model (1.2) is unique in this 

respect. 

The answer is given in 

Theorem 2. 

On the assumption that the answers of different persons to a set 

of items are independent, dichotomous stochastic variables and that 

the probabilities of the two possible answers 7 and 0 of a person (v) 

to an item (il depend only on two scalar positive parameters, charact-

erizing the person a v) and the item (ci f respectively: 

(2.1) 

then 

(2.2) 

pfliv,i1 = f(t y ,c i ),p1Olv,i1 	1-f( v ,c i ) 
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but for trivial transformations, is a necessary condition for the 

parameters always to be separable as mentioned in theorem 1. 

Consider any person with a parameter being exposed to two 

arbitrary items with parameters
1 
 and E

2. 
The set of possible outcomes 

is D
2 
as defined by (1.3), the probabilities of which are 

(2.3) 

131(1,1)1D2 ,,e1 ,c2 1 = f(c,c 1 )f,e2) 

PI(1,0)1 1)2 ,,c,,E2 1 = f(E,c 1 )(1-f(,c2 )) 

pl(0,1)11)2 ,i;,,c i tc 2 1 = (1-fq,e 1 ))f( ,c 2 ) 

pl(0,0)1 2  1) ,E,E 1 ,c2 1 = (1 - f(, e 1 )) (1-f(,e2 )) 

1 
A being a subset of D

2 
our first question is whether *ID

2 f 

for any choice of the function f could be independent of E. Clearly 

A would have to comprise at least two elements of D
2 
and the same must 

hold for its complement in D
2 

Thus, if at all possible, A should be a 

pair. However, the four pairs 

(2.4) 

are excluded unless f(C,e) is independent of which is a trivial case. 

Thus we are left with two possibilities: 

(2.5) 
	

11 ( 0,0 )u (1,1)1D2 }. ( 1-f(E,E 1 )) ( 1-f(E, c 2 ))44( & ,c 1 )f(C,c 2 ) 

and 

(2.6) 
	

13 {(0,1)0(1,0)1D2 1=(1-f,E1 )) f (&,e2)+f,e1 )(1 - f(E,E2 ) 
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(2.11) 

for which 

(2.12) 

v:{(0,0),(1,1)1 

(1-f(&,c
1 
 ))(1-M,c 2)) 

p1(0,0)11/1 _ 
(1-f(E,E 1 

 ))(1-M,c 2
))+f(&,E

1 
 )f(&,c 2

) 

both of which for 

(2.7) 
	

Cl = E2  = 

depend on E except in the trivial case, the conclusion being that no 

I 21 
such non-trivial function f(4,,c) exists that any P{ AI D  could be 

independent of F. 

Turning now to conditional probabilities it is obvious that V 

must consist of either a pair or a triple. 

As a representative of triples we may take 

(2.8) 	 V: 1(0,0),(0,1),(1,0)1 

in which the probability of at least one of the elements should have 

the desired property. Consider for instance 

(2.9) 	 p { co,o) l v} _ 
(1-f( E ,c ) ) ( 1- f ( E,E 2)) 

1 - f(cyc 1 ) f(e 2
) 

which in the case (2.7) reduces to 

(2.10) 
(1-f(,e))

2 

1-f
2
(E,E) 

1 - f (E,c )  

l+f(E,E) 

And similarly all other cases with V as a triple is reduced in 

absurdity. 

As regards pairs (2.4) of course do not count as possible V's 

and so we are left with two cases: 
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reduces to 

(2.13) 1  

1+0aill )12 
\ 17f (E , c  

when the c's are equal, and 

vq(o, 1),(1, o)} 

(1- f (E,c0f(t,c 2 ) 
pi(0,1)1 1/1 = (1_f(,c1))m,c2),I.M,e1)(1

-f(E,E2)) 

1 
which for coinciding c's reduces to -2- . Accordingly our problem has 

been boiled down to the question: For which function f(E,c) is (2.15) 

independent of for any unequal 	and c 2? Clearly, the ratio 

f(E,c i ) ) 

' 2 
(2.16) 

1-f(C,c i ) 	1-M,c 2 ) 

should be independent of &, e.g. equal to its value for = 1; 

accordingly 

f(E ► c i ) 	f(1 c
1 
 ) f(1c

2
) 	f(t,c 2

) 
(2.17) 

(
'

1-i(1, c 1 ) • 1-f(1,c 2)/ 	1-M,E 2 ) 1 

must hold for arbitrary e l , c
2 
and F. In particular c

2 
 = 1 yields the - 

 
relation 

(2. 18) 
f(t,c 1 ) 
	

f(1, c 1 ) 

1—M,c ) 	1—f(1,e 
1 	 1  

f(E,1) 	f(1,1) 

• 1-f( ,1) 	• 1-1(1,1) 

Take now 
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(2.19) f(C 1)  

1- f(C, 1 ) 

   

and 

f(1,c 1 ) 	f(1,1) 

 

(2.20) 

 

1-f(1,c 1
) 	1-f(1,1) 

as new parameters, then we get 

(2.21) 
F'c' 

f(& ' E 1 ) = 
 '1  
1+Cc' 

1 

from which it follows that with a suitable choice of parameters (2.2) 

is the only solution of our problem. 

3. A GENERALIZED SEPARABILITY THEOREM. 

In order to suggest a possible generalization of theorem 1 to more 

response categories than two we shall first consider a homogeneous 

version of model (1.2) 

(1) (1) 
p/x(1)1v,i1 	

C 
v  E 1 

Yvi 

(3.1) 

C (2) (2) 
. 

p f x (2)1 v,i 1 	V 
c 

1
- 	

Yvi 

where 

(3.2) 
(1) (1) 	(2) (2) 

Yvi = Cv 	ci 	Cv 	ci 	• 

Obviously (3.1) is connected with (1.2) by the relation 
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(3.3) E - 
v 	(2) 

E v  

E
(1) 

C = i (2) 
E. 1 

but the symmetry between the two probabilities in (3.1) suggests a 

generalization to more response categories for which an analogue to 

theorem 1 holds: 

Theorem 3. 

Consider a situation where eaciL out of n persons answer k questions 

to each of which m response categories 

(3.4) U  : I (1) (e) 
x ,...,x(m ) } 

are available, all nk answers being stochastically independent. Assume 

that each person () as well as each question (i) is characterized by 

an homogeneous vector, respectively 

( (3.5) 	 E =
(1) 	,e ve) , 	v

m) 
) 

v 	v 

and 

	

, (1) 	(e) 	(m), (3.6) 	 = le 	... 	 E j. 	• 	Pi 	Pi 

such that the probabilities of the possible answers are given by 

(3.7) 

t (e )i (e ). 

plx(e)1v,il 	
v 	i  

Iv i 

m 	
(e) (e) 

Ivi = L E y c i 
e=1 
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counting for each p\ erson (v) the number, avo 
(e) 

of questions to ,hich 
fo  

his answer was x' ' and simlarly for each question (i) the num:er, 

aoi )  , of persons that gave this answer, then the conditional probability 
(e o= the whole set of aoi

)  's 	 e=1,...,m), given the whole set 
(e o- a )
vo I s (v=1, ....,n, e=1, ...,m) depends on the question parameters •  

(3.5). And, symmetrically, th.3 probability of aZZ a (eVO
) 's , given the set 

or a (e) 's depends on theE's, but not on the ci 's , oi 	 v  

As regards the number of persons and questions the formulation 

of theorem 3 is more inclusive than that of theorem 1, covering also 

the generalization indicated by (1.10). 

For the proof a special notation in vector-matrix algebra is 

expeditious: Let 

( 3 . 8) x = (x 	x ) 1" m 

be a real vector and the elements of 

(3.9) a = (a 	... a ) 
1" m 

be integers > 0. We define x raised to the power a as the scalar 

a 	a 
 

	

(3.10) 	 xa = x1
1 	

x 

and notice the rule 

x
a+b 	a 

	

(3.11) 	 = x . 
xb 
 , 

Denoting now the answer x
(e) 

of person v to question i by the 

selection vector 

(3.12) 

e 
a= (0,...,1,...,0) 
vi 
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Yvi 

Yvi = v C  i 

(3.13) 

a 	a 
vi 	vi 

v  
av 	- 

pi a
vlvk 

- 	
II 
(1)

y  v i 

a 	a . 
VO 	 V1 

v 	
. 	 c. (i)  1 

we may condense the m equations (3.7) into one formula 

According to the stochastical independence we have for a given 

person 

(3.14) 

where 

(1) 	
VO

(m)
) • (3.15) 	 a 	= 	a . = (a 

vo 	V1 	VO  

By summing (3.14) over all sets of selection vectors with the same 

vector sum a
vo 

we get the marginal probability of a o : v 

(3.16) 

a 

v° .Y((c.)la ) 
pia / - 	v 	

vo 
vo 	 Yv. 

(i) 

where 

(3.17) y ((c i )1 avo ) = 
Ea .=a 

V1 VO 
(i) 

av 1 	avm c l 	...cm  

is a polynomial in the c's. 

From (3.14) and (3.16) we obtain the conditional probability of 

a
vlvk 

for given marginal vector a 
vo 
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n c" 

	

(3.18) 	 pia „..,a la 1 _ (i) 1  
vl 	vk vo 	y((c.)la ) 

vo 

which is independent of the person parameter C v . 

Utilizing this result for all of the persons we find, due to the 

stochastical independence, the joint probability of the whole set of 

selection vectors, given all the marginal vectors of the persons 

It 
6a 

 ol 
. 

(i) i  

	

(3.19) 	 pf((avi ))1(a vo )} - y(( c  ma  )) 
i 	vo 

where 

(3.20) 

and 

(3.21) 

a
oi 

= / a 	= (a
(1) 	

a
(m) 

V7. 	oi "'" of 
(v) 

y((ci )1 (a y0 ) ) 	( 1‘1 ) y ((c i )l avo ) 	, 

and from (3.19) we get a
oi II  

[ay 	

(i)  
c. 

01 	vo 	- (aoi
) 	y((c.)1(a )) (3.22) 	 pl(a .)1(a )1 - 	° 	, 

vo 

where the bracket indicates a combinatorial coefficient, viz. the number 

of matrices 

(3.23) 	 ((a v)) , v = 1,...,n, i = 1,...k , 

with selection vectors as elements, which have the two sets of marginal 

vectors (avo""1"1". 

 Symmetrically, the formula 

   

(3.24) pl(avo )1(a0i )} = rvo) 
(a .) 01 

 

 

Y (( v )1( a0i ) ) 
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also holds. 

Thus the proof of theorem 3, the separability theorem for the 

model (3.7) has been completed. 

4. PARTIAL AND COMPLETE SEPARABILITY. 

An inversion of theorem 3 requires that a further property of the 

model is realized. 

In practice it is quite often felt that the categorization of the 

observable qualities is somewhat arbitrary, or that there are too many 

categories to be manageable, or that some of the categories are rarely 

observed in a given set of data. In such cases it is costumary to 

undertake a revision of the categorization, quite often by pooling two 

or more categories into one. This,of course, is quite legitimate, but 

in connection with the model (3.7) it should be noticed that the 

probability of a subset V of U being 

c (e) c (e) 

	

x (e) i V v 	1  
(4.1) 	 PiViv,i1 - 

Yvi 

its numerator does not usually enjoy the multiplicativity of the 

numerator in (3.7), on which the separability was founded. Thus the 

separability usually gets lost by pooling categories, if it were at-

tainable for the original categorization. 

However, the separability is retained by a different kind of 

modifying the categorization, viz. that of concentrating upon the 

responses falling within a subset V of U , neglecting observations 

falling into its complementary set V in U. 

First it follows from (3.17) and (4.1) that 

c (e) (e) 
(4.2) 	 plx(e)  IV,v,il - 	v 	ci  

C c (h) c (h) 

(h) 	v 
V ' 
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i.e. the model within V is of the same type as (3.7). Thus, in cases 

where all nk answers fall within V theorem 3 may be applied to 

demonstrate the separability of the vectors 

(4.3) 

and 

(4.4) 

( e) )  

C' = (E (e)  ) 

However, also for arbitrary response matrices the separability 

holds. In fact, in the proof of theorem 3 we may just interpret a
vi 

as a selection vector in V if x
(e)

CV and otherwise let a
vi = (o,...,o) 

symbolize a "missing plot". The whole argument from (3.13) through 

(3.24) may then be repeated with obvious modifications, leading to the 

separability of (4.3) and (4.4). 

This result we shall express in a more general setting, leaving 

aside the references to (3.7) and (4.2). 

Let persons and questions be characterized by parameters
v 
and 

c., in so far as the observations are elements of U. For simplicity 

we shall assume that the E's and the C's are vectors of the same 

dimensionr<m-1.Theelementsoftheresponsematrices((a
vi

)) are 

assumed to be independent stochastic variables, which for each (v,i) 

has a probability distribution 

(4.5) 	 plx(e) lv,i/ = 	(E 

that depends solely upon the parameters 	and E l:  We shall say that 

the person parameters and the question parameters can be separated 

from each other if two non-trivial probability statements, direct or 

conditional,aboutthematricts((avl )) hold, one of which depends on 

the F 's but not on tile c's while the other one depends on the 
' 

E
i 
 's'  but not on the 	

's. 

Consider now what may happen when an a vi  is only recorded if 
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the corresponding x
(e) 6 vcu and then as a selection vector referring 

to V. Within this reference frame the probabilities 

(4.6) 
fe (Ev' c)  r 	1 plx (e) 

 IV,v,i1 _ PIVIU,& ,eT 
v 

may be expressible in terms of two different sets of parameters, Ex; 
and c' , of a dimension r' not exceeding r, and < m' - 1, V consisting 

— 
of m' elements. E' v , being characteristic of person no. v in a more 

limited sense than &
v
,is presumed to be a function of &

v
. And anal-

ogously for e'. Whether or not the separability holds for Ev and c . 

in relation to U, it may hold for E x', and ci in relation to V. If it 

does we shall say that the model (4.5) allows for a partial separability 

of parameters for persons and questions. If the partial separability 

holds for any V C U we shaZZ sap that the model (4.5) allows for a 

complete separability of the two sets of parameters. 

The above result may now be expressed as: 

Theorem 4. 

The model (3.7) allows for complete separability of the two kinds 

of parameters. 

5. A NECESSARY AND SUFFICIENT CONDITION FOR COMPLETE SEPARABILITY OF 

PARAMETERS FOR PERSONS AND QUESTIONS IN CASE OF MAXIMAL DIMENSION. 

Turning now to the inversion of theorem 4 we first notice that 

if in (4.5) we assume that the person parameter E v  could be fully 
r  

determined from the m probabilities ptx
(e)  1v0.. 1 provided the item 

parameters c i  were known, then the number of elements in the vector ev 
could not exceed m-1 since 

(5.1) 
( 

plx
e) 
 lv,i1 = 1. 

e=1 

And the symmetric condition requires that neither the dimension of c. 
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exceeds m-1. In this sense m-1 is considered to be the maximal dimension of 

both E and E
i

. 

Apparently the parameters in theorem 3 are m- dimensional, but 

frcm(3.7)itisclearthat& v andc.are expressed in homogeneous 

coordinates, a representation we shall make use of whenever convenient. 

We may now formulate the inversion of theorem 4. 

Theorem 5. 

} depend 

on two sets ofhomogeneousm—dimensional parameters E v  and ci, referring 

to respectively persons and item( )  cf. (4.5), then the validity of 

the model (3.7) is a necessary and sufficient condition for complete 

separability of the two kinds cf parameters. 

From the complete separability it follows that partial separability 

holds if for V in (4.6) we take any of the pairs 

(5.2) 	 V
em 

lx (e) ,x (m) 1 , e = 1,...,m-1 , 

to each of which theorem 2 may be applied. The parameters in (2.2) are 

then to be understood as person and item parameter corresponding to the 

pair considered, i.e. as scalar-functions of E and c, say 

(5.3) (e) 
= Te(0,e

(e) 
=

e
(c). 

Now 

On the assumption that th answers of different persons to a set of 

items are independent stochvItie variables for which the probability 

distributions over m possible categories (e) (7) 	 (m) 

(5.4) 
em 

pix (e) 1U1  

p x (e) 1114-p{x (m) 1U} 

and therefore 
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(5.5) 
p f x (e) ;  1_ E (e) c ( e ) 

plx (m ) lul 

Since the vectors E and 

(5.6) 

both have the dimension m and the m-1 elements of E are presumed to be 
functionally independent - otherwise E could have been replaced by a • 
parameter of lower dimension - may, due to (5.3), be expressed in 

terms of (5.6), i.e. this vector might have been taken as the person 

parameter, Applying the same argument to 

(5.7) 
	

k
, E(1) 	(M-1)

,1) 

we see that both sets of parameters might have been chosen in such a 

way that (3.7) holds. 

This proves the necessity while theorem 3 ascertains the suf-

ficiency. 

6. CONDITIONS FOR COMPLETE SEPARABILITY OF EQUIDIMENSIONAL PARAMETERS 

FOR PERSONS AND ITEMS. 

What happens when the dimensions of and c are not maximal? 

So far, I do not possess a complete answer to that question, but I do 

have an answer of a generality that corresponds to the epistemological 

viewpoint to be developed in the last section. 

For a preliminary wotivation I may just point out a further 

property of the model under consideration which becomes conspicuous 

by conversion of (3.7) into an exponential form. Setting 

(6.1) 	log c (e) 	e
(e) 	log c (e) 	o(e) 

V 	V 	 1 

we get 
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6
(e) (e) 
v 

+a. 1 
e 

Y • 
pfx (e) iv,il - 

e=1 

m 	e (e) +Q  (e) 
v1 . e = 

vi 

(6.2) 

where now 

(6.3) 

e = 1,...,m 

With the notations 

(1) 	(m) 	 (1) 	(m) (6.4) 	 e 	= 	 ), 	0. = (a. 	,...,a. 	) 
V 

 
1 	1 

the version (3.13) of (3.7) takes on the form 

a .(6 +a.)
x 
 , 

y  l vi v 1 

vi 

when y 
v1 

 . of course may be considered as a function of 6
v
+a. 

Thus for any combination of v and i the distribution of the 

answers over U is governed by a parameter 

(6.6) 	
Cv1 . = 0 v

+a..  1 

( 
Removinganadditiveconstant,from6vanda.,e.g. 

vm) 
 and 

(m) , and expanding the idea somewhat we may say that the answer 

distribution is characterized by a parameter of the same dimension 

as the person and item-parameters, of which it is a function. The 

special feature of (6.5) then is, that the dimension of the three 

parameters is maximal and that the parameters can so be chosen that 

the general function 

(6.7) 
Z 	= 	,a.) vi 	v 

reduces to the sum (6.6). 

Consider now the more general case where the dimensions of ?;', 
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8 and a are still equal (=r), but possibly < m-1, In that case (4.5) 

is replaced by 

(6.8) 
	

p[x
(e) 

 lv,11 = fe (cvi ). 

Let us investigate the conditions for complete separability of 

the parameters for persons and for items, requiring, however, for 

partial separability somewhat more then above (sect. 4), viz, that 

(4.6) can be expressed in terms of an answer parameter c'. which in 
vi 

relation to V has the same properties as Zvi
according to (6.7) has 

in relation to U, i.e. 

(6.9) C'. 	1.1 = 	1 (8'V 	1,a!) , 
V1  

where C', 0' and a' are equidimensional parameters characterizing 

respectively answers, persons and items, p' being a fixed vector 

function. 

In order to derive a necessary condition we shall apply theorem 

2 to the partial separability for the pairs (5.2) and conclude that 

for each pair we may have 

(6.10) 	 C'. = 0' + a: 
V3 	V 	1 

whereCanda!arescalarfunctionsofrespectivelye v anda..Thus 
1 

for each e = 1,...,m-1,m 

(6.11) 
p{x

(e)
11.1} 	.e(ev )+4'e (a i )  

( p{x m)  I u} 
, say, 

interpreting $ 111 (8) and *
m
(a) as 0. 

However, due to (6.8) and (6.7) we have when dropping suffixes 

v and i 

(6,12) 

f
e
(p(8,a)) 

f(p(8,0)) 	e In 	
e(0)-1*e(a) 
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Or, say, 

(6.13) 

	

f (1.1(0,a)) 	0 (5)4* (a) 

	

ge (, (e, 0)) = log f 
 (

.0,0) 	e 	e 

m P 

Considering first the r first of these equations we may - with 

proper enumeration - take 

(6.14) 01,1(6),...,02.(6)) 	= 
(1) (r) 

) = 0 

and 

(6.15) Op
1
(b),...,*

r
(a)) = 

(1) (r)
) = E 

as new parameters instead of e and a. p then becomes a function of 

and E, but since the vector 

	

(6.16) 
	

(g
1 	

) = 6 + E, 

p turns out to be some vector function of 0 + E, say 

	

(6.17) 	 11(0,0) = M(0 + E). 

Next we insert this result in the rest of the quations (6.13), at 

the same time, however, utilizing that e and a according to (6.14) and 
(6.15) may be expressed in terms of 0 and E and that the same therefore 

holds for
e 
 (A)and *421 (0,e = r+1,...,m-1. Thus we may write 

	

(6.18) 	 ge
(M(0 + E)) = e

(0) 4- e
(E), say. 

If in these equations we in turn differentiate with regard to 0 

and E we get 

ri 
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(6.19) 
dM(0+E)  

dge (M) 	dO
e
(e) 	oe (I) 

.44- • 	44- 	 411. 
d(0+E) 	dM 	d0  

from which it follows that 

( 6 . 20)O(e) 	*(a) = cP(0) + 'Y (E) = a + (0+E)6: e 	e 	e 	e 	e   

where a
e 

is a scalar and Be a vectorial constant, an equation which 

on proper interpretation of a
e 
and Be also holds for e = 1,...,r and 

e = m. 

Going back to (6.12) we now have 

44. 
a +3 (0+E) 

(6.21) 	f
e
(11 (esa)) = fin (1-103,0)e e e  

and summation over e = 1,...,m determines f
m 

as 

(6.22) 	f (11(e,a)) - 

m 	 m 	a +a (0+E) 34'' 
Ee ee  

e=1 

Realizing that we might have chosen, to begin with, 0 and E as 

parameters and therefore in the end replacing them by e and a, we obtain 

for the probability (6.8) 

(6.23) 

where 

(6.24) 

plx (e) IV,il - 	 1  
ea e

+6
e v

+a
i 

y v +a.) • 

a +8 0 
y(6)  = E e ee .** 

the similarity to and distinction from the Darmois-Koopman class of 

distributions will be recognized. 

In so far as a
e 

and B e are considered as known constants the model 
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1 	(v) 
II 	R 	y(6 +a.) 	

e 

(v) (1) v 1  

4- 44. 	 44. 44- 
a a +z a $

4 
 0 +Ea.$ a. 

vo v (i)  ol 	1 oo 

(6.23) allows for separability of the 6
v
's and the a

i 's. 

In fact, using the selection vector (3.12) the m equations (6.23) 

may be condensed into 

1 	vi 	v i (6.25) 	pia . - 
v1 1 	y(6 

v  +a.) 	e  1 

a44. 

 

with the notations 

a (a44+$44-(6 +0 )44) 

(6.26) 
•We 
a = 

a
1  

a
m 

... 

( 511 ' 	lr\  

m1' ••• ' Omr 

From the stochastic independence of the a. 
v1 
 .'s it follows that the 

probability of the whole response matrix((a 
vl 

 .)) is 

(6.27) 	14((avi ))1 

where a 
vo 
 and  a

oi 
are the marginals (3.15) and (3.20) while 

(6.28) 	a 	=Ea vo =Ea0. 
oo 	 1 

(v) 	(1) 

Accordingly the joint probability of the marginals becomes 

(6.29) pl(a 	), (a, .)1 
vo 	01 

[(a )] 
vo  

(a .) 	

44.  
aoo a + E 	6

v 
+ E a

oi
$ a

i 
_ 01 	 (v) 	(1) 

. e 
R R y(6v+ai ) 

• 
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the bracket just as in sect. 3 indicating the number of matrices of 

selection vectors with the two sets of marginals (avo ) and (aoi ). 

Summing over those combinations of the aoi 's that are compatible with 

a fixed set (a ) we get the marginal distribution 
vo 

ie..  
a a + E a 8 8 
00 	 vo v 

(v) 

	

(6.30) 	pl(a )1 = 
e 	

. y ( (a.)1 (a )) vo 
II II y(Ov+ci) 	

i 	vo  

where the second  factor on the right only  depends on the 

44- 44- 
Ea .8 a 

	

(6.31) 	Y((a.),(avo  )) = 	E 	
e -01 	i  

Finally, on dividing this expression into (6.29) we obtain the 

probability of the set (a
oi

) as conditioned by the set (a
vo

): 

[ avo l 

44- 44- 
( a .) 	 E a 8 6 
01 	 vo v 

(6.33) 	pl(a 	)((a .)1 - 	  
vo 	01 	y((e

v
)1(aoi )) 	e

(v) 

whichallowsfortheestimationoftheVsirresPectiveofthea.'s. 

Thus the two sets of parameters may be separated [41. 

(a .) 
01 

44- 
( a 	 E a .8 a 

of 
 

(i) of 
	i 

 
(6.32) 	131(a—)1(a )1 01 	vo 	Y(( 3 .)((avo  )) 	

e  

which leads to estimating the item parameters irrespective of the person 

parameters. 

Symmetrically we have of course, 

[(a
vo 
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Clearly this argument runs parallel to that of sect. 3 and the 

similarity may even be carried a step further. Introducing in (6.23) 

them-dimensionalparametersandc.defined by 

(6.34) 

and 

(6.35) 

(e) 
log e V 	 , a + e 

e v 

(  
log eie) = 

eo i 
 

e = 1,...,m 

e = 1,...,m 

it takes on just the form of (3.7), and (6.32) is transformed to (3.22). 

Thus we may consider (3.7) as the fundamental form of the model which 

we in practice may have to try out as a first step in an analysis, 

Being satisfied that the data anyhow may be represented by (3.7), i.e. 

bytakingr=m-1,andthenestilriatingthecsandtheo.'s, the 

subsidiary question arises: Is it possible to reduce the parameters 

to parameters of a lower dimension and still retain the complete 

separability? 

The answer is: If that is possible, then log v 
(e) 

 and log c(e)  

must be linear functions of the new parameters e v and u i
. 

It remains to be seen that the separability is complete. Consider 

in the model (3.7) a set V CU of m' elements x
(e) 

and the corresponding 

partial vectors E' and F.: of
v 
and c.. According to sect, 4 (E') and 

(c') are separable in the submodel (4.2). However, for these partial 

vectorsofand(c.)those equations (6.34) and (6.35) for which 

x
(e)

( V must
v
hold. Now the corresponding vectors B

e 
form a coefficient 

matrix (3' of the order (m',r), but the rank r' of this matrix may be 

less than r. Accordingly a' may be split into the product of two 
matrices of the orders (m',r') and (r',r), both having the rank r': 

(6.36) 
	

Y 	. 	d 
(m',r) 	(m',r') 	(r',r) 
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(6.37) 

and therefore 

(6.38) 

a 
(17r) = Ye 	6  (1,r') (2-1 ,r) 

log (e)  
= ae  + y e  • 66: 

for x
(e)  E V 

Thus for each of the relevant vectors we have 

(e) 	 4- 
log e. 	= y• . 

1 

It follows that 

(6.39) 
	

144.  = (se 	and 	= du's.  

may be taken as those functions of 6 v and a i 
which can be separated 

on the basis of observations limited to V. 

The results of this section may be summed up in a generalization 

of theorem 5: 

Theorem 6: 

Assuming that: 
1. the answers of dif!erent persons to a set of different items are 

independent stochastic variables; 

2. for each combination (v,i) of person and item the probability 

distribution over the set U of m possible answers Lr (/)„..,x (m) } 

is defined as m functions of an r—dimensional parameter Zvi  (r<m-1); 

3. the parameter 4 vi  is a vector function of two parameters e v  and 

ai, both vectors of dimension r, characterizing respectively person 

no. v and item no. i; 

then the necessary and sufficient condition for complete separability 

of the two sets of parameters, (e w) and (ai) is that the mentioned 

probability distribution is of the form (6.23). 
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7. SEPARABILITY, MEASUREMENT, AND OBJECTIVITY. 

The structure of the model (6.23) is quite remarkable. First we 

notice that the psychological investment of the preceding sections is 

purely incidental, being due to the historical fact that the type of 

problems it deals with first became manifest in psychology and that 

so far most of the applications have been restricted to this and 

related fields. But from a formal point of view "persons" and "items 

(or questions)" may be replaced by any set of "objects", respectively 

of "agents", any "contact" or "interaction" of an object and an agent 

resulting in a "response" belonging also to a set which may be finite 

or infinite. The aim of producing the contacts is to achieve comparisons 

between the objects (and/or the agents) by means of their interactions 

with the agents (or the objects). With a view to this each object, each 

agent as well as each contact is assumed to be fully characterized by 

a vector parameter, denoted respectively by the letters 0, c and C. 

Already this assumption guarantees the uniqueness of C as a function 

of e and a. Adding to this the probabilistic assumption (6.8) -
together with the stochastic independence of the responses - and the 

equidimensionality 
x
) of 8, c and C, then we have everything that is 

needed for the proof of theorem 6, 

Accordingly this theorem stands a chance of being applicable in 

literally any field of science where the observations are qualitative 

and, with a simple modification, also when the observations are 

quantitative. 

Of course, the theorem does not tell that responses to a certain 

set of interactions do follow a probabilistic law like (6.23), but it 

does tell that whether observations come from Physics, Psychology, 

Social Sciences or Humanities, and whether they be quantitative or 

qualitative, gives no a priori reason for believing in or abolishing 

methods founded upon strong probabilistic models Zike (6.23) and its 

consequences. 

x )  
The discussion of this assumption I have to defer to some 

other occasion. 	 GR 26 



In Psychometrics measurement is often characterized as "the 

art of assigning figures to qualities" or the like. And discussing the 

foundations of measurement rarely goes beyond the axiomatics of 

categorization, of the natural numbers and of positive as well as all 

real numbers. With a few exceptions, such as the Beaufurt scale of 

wind force and the scale of hardness, measuring in Physics is defined 

in relation to an established physical law. By way of an example I 

may refer to Cl. Maxwell's analysis of mass and force [3] and [2], 

chapt. VII, according to which the introduction of these two concepts 

and of the measurements attached to them is in principle based upon the 

empirical fact that the acceleration suffered by a rigid body when 

translated by a mechanical device is proportional to the product of 

two factors, one referring to the body - the reciprocal of its "mass" -

the other one referring to the instrument - the "force" applied. Thus 

the two concepts are derived simultaneously from the interactions of 

bodies and instruments. 

The model (6.23) opens up similar possibilities in fields where 

the observations are qualitative, but may be mapped upon probability 

distributions. Clearly, if we could determine the probabilities 

pfx 
(e)

Iv,i1 then from 

(7.1) 	log plx
(e)

iv,i1 = - log y 
vi 

 . + a
e 
 + a e  ca v+a.) 

for a number of objects and agents a simultaneous determination of the 

0 1:s and the a.'s would be accessible provided the a e
's and the ae c s 

were known in advance. Thus in principle a measurement of object 

.parameters and agent parameters in the same sense as in Physics has 

been established as soon as the validity of the model has been 

ascertained [4]. 

For this reason I have characterized (6.23) as a model for measuring. 

In practice the probabilities cannot be determined, but the para-

meter estimations indicated in sect, 6 as a substitute. 

The coefficients a
e 
and S

e 
may sometimes be derived from theoretical 

considerations. As a case in point I may mention the multiplicative 
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(7.3)
0 
 ,a 

OJ 
 .1(a 

VO 
),(a 01  .)1 = 

a 	a 
(a ) 
Vo 	 E

h oh ' 
c °. 
j 

 

Y(ch ,c j 1(avo ),(aoi )')  

Poisson Law represented in N, chapt. II and VIII, 

a 
-A 

vi 	
A
vi 

(7.2) 	 plaiv,il = e 	• 	
a! 

A . 

V1 	
E 
V

E 
1 

where a may be the number of misreadings committed by pupil no. v 

in text no. i. 

If no apriori knowledge about the coefficients is available they 

may be inferred from the data, but that presents a new class of problems 

which I have to leave at present. 

A further conclusion from the model is laid down in the formulae 

(6.32) and (6.33), i.e. that the estimation of the agent parameters 

may be directed in such a way that it is unaffected by the lacking 

knowledge of the object parameters, and the reverse. 

The kind of argument that lead from (6.29) to (6.32) and (6.33) 

may even be applied once more, thus leading to the elimination of all 

parameters, but two in both cases: 

and 

(7.4) 	pia 	,a 	l(a .),(a 
AO p0 01 	VO 

a
Ao 	

a
po - 

(a 	) A 	• vo 

(a
01 
.) 	y( A ,E p r(aoi ),(avo )') 

where (a 	indicates the set of all a
01 	

except aoh  and a and 
01 	 oj 

analogously for (a vo)'.  Thus it is possible to separate any two E's 

as well as any two E's from all other parameters in the system under 

consideration. 

At this stage I wish to remind you of a word which is very well 

known and very much used - in a lot of different meanings, the word 

objectivity. On this occasion I shall not enter upon a historical- 
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philosophical discussion of this term but just point out that 

objectivity seems to be an almost ubiquitous request as regards 

"scientific statements". A precise formalization of objectivity will 

be given elsewhere. At present I shall draw the attention to (7.3) 

as a comparative statement about the two agents A h  and A., based upon 
J ,  

the whole matrix of stochastic variables ((a
vi

)), but mathematically 

independent of all other parameters than just those to be compared - 

independent 

 

nd 

therefore independent of the corresponding 6's and a's. 

The model (6.23) of course only holds for a certain class 0 of 

objects 	 he setjk of 

responses being fixed. Theorem 6 tells that the invariance just 

pointed out holds for any set of elements 0 1,...,On  E 0 and any set 

of elements A 7 ,...,Ak E A Therefore we shall qualify the statement 

UMatioutliti andli . ,based upon ((a 4 )), as specifically objective 

DI [5], [6], [7], [9] - the qualification specific being chosen in 

order to distinguish between this particular kind of objectivity and 

other senses of that word. 

Clearly (7,4) is also specifically objective as a statement about 

0
A 
and 0

11
, based upon ((a vi

)), 

When, in the title,I speak about consequences the mathematical 

theory of objectivity may have upon the choice of models I am referring 

to the demand for objectivity in the conclusions. If the objectivity is 

understood to be specific and if this specificity is presumed to be 

complete and the parameters have the same dimension then the modeltype 

(6.23) is in fact the only possibility for independent a vi s s. 

Thus, if a set of empirical data cannot be described by that 
model then complete specifically objective statements cannot be 

derived from them. 
Firstly, the failing of specific objectivity means that the 

conclusion about, say, any set of person parameters will depend on which 

other persons are also compared. As a parody we might think of the 

comparison of the volumes of a glass and a bottle as being influenced by 

the heights of some of the books on a shelve. 
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Secondly, the conclusions about the persons would depend on 

just which items were chosen for the comparison, a situation to 

which a parallel would be, that the relative height of two persons 

would depend on whether the measuring stick was calibrated in inches 

or in centimeters. 

Avoiding such irrelevant dependencies is just my reason for 

recommending the use of the models for measuring whenever they may 

be utilized. Which, by the way, is not at all always - but that raises 

another class of problems. 
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