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Using Rasch Measures

For Rasch Model
Fit Analysis

George Karabatsos, Ph.D.

In Rasch fitanalysis, Z ; is used to measure the fit of
a single person-item response, while mean-square (MS) statis-
tics analyze the fit of response sets, and ZSTD tests the signifi-
cance of a particular MS value.

Most analysts find the Rasch model person measures
and item calibrations easier to understand and communicate
than the Z ; , MS, and ZSTD statistics. For instance, only
through the necessary calculations do we know how much
logit-misfit is involved for a given Z ; or MS value. Further-
more, Z_;, MS, and ZSTD are nonlinear functions of Rasch
model values (e.g., B -D,).

This paper introduces a Rasch model fit statistic that
enables the analyst to interpret fit of a response on the same
scale as person measures and item calibrations. Essentially, this
is accomplished by explicitly incorporating the logistic Rasch
model in the fit statistics.

RESPONSE-FIT INDEX FOR DICHOTOMOUS CHOICES

Let K ; denote the logit-fit of person n’s response to
item i, calculated by: K , = f ,(B_-D) [1]

where f , classifies the model-fit of a person-item response
f, =0 foraresponse that fits the model

X,=1 when B, >D,, or X ;=0 when B <D)
f,; = —1foraresponse that misfits the model

(X,;=1 when B <D,, or X ;=0 when B >D,).

Example 1. Richard with ability B =3 encounters “item 9"

Map item and person on a number line:

Br=3
U
< s >
fn
Dy=1

Expected Response Rule: Since B, >D,, then {X ;=1} is the
expected response.

Response  Fitresult Interpretation

{X,;=1} K =003-1) =0 Responsefits
measurement model.

{X,;=0} 2= —1(3-1) = -2 Richard responded 2 logits
below expectation.

Example 2. Cindy with ability B-=1 encounters “item 6"
having difficulty Dg=5.

Be=1
U
< t 4 >
ft
D=5

Expected Response Rule: Since B < D,, then {X ;=0} is the
expected response.

Response  Fitresult Interpretation

{X,=1} =-1(1-5) =4 Cindy responded 4 logits
above expectation.

{X,;=0t K, ;=0(1-5) =0 Responsefits
measurement model,

Example 3. Mary with ability By ;=3 encounters “item 4"
having difficulty D, =3.
By=3
U
< >
f
D=3

Expected Response Rule: Since B, =D, then {Xm. =0} and
{X,;=1}have equal probability (P ;,=.50, therefore

P_,0=-50). So by definition, neither response misfits the model.
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Two Possible Scenarios:

Response  Fitresult Interpretation

{X,=1} K,;=03-3)= Response fits
measurement model.

{X,;=0t K, ,=03-3)= Response fits
measurement model.

RESPONSE-FIT INDEX FOR POLYTOMOUS CHOICES

Since all Rasch models reduce to the dichotomous-
response model, Equation 1 can be extended to analyze the fit
of a rating-scale response. For an item with m response catego-
ries, there are m—1 adjacent-category steps, where each step j
is denoted by the parameter F. A person’s rating scale re-
sponse to that item indicates a Certain number of “advanced”
steps, and a certain number of “unadvanced” steps. Each “ad-
vanced” versus “unadvanced” step response is a dichotomy,
and therefore, there are j dichotomous responses within a single
rating scale response.

The fit calculation of a single rating scale response
involves calculating f (B —D,-F, ) for each of the steps, and
letting K ; equal the calculauon that differs the most from
zero. The K ; for a single rating scale response is therefore
calculated by:

K, = |max| [fmli (B,-D-F, )] [2]
where,
|max| maximum in absolute value
fnu = 0 forastep-response that fits the model
fnij = —1 for a step-response that misfits the model
In the case of dichotomous response choices, there is only one
threshold j, in which case equation [2] reduces to equation
[11.

Here is an example of an item with a three category
(m=3) rating scale, where X ,={0,1,2}, renderingm-1=2
steps. Let F; denote the parameter for the step to category 1
from 0, and F , for the step to category 2 from 1.

Example 4. Bob with ability Bg=3 encounters “item C” having
difficulty D=3.5, where Fy; =?1.5 and F}, = + 1.5 relative
to D¢

Br=3
U
f f f
Fcoi=2 (Dc‘=3.5) Fciz=5

Expected Response Rule: Since B >F,y, and B <F,,, ,
{X,;=1} is the expected response.
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Response Fitresult Interpretation

{X, =2} K= |max|[0(3-2),-1(3-5)] =2 Bobresponded 2 logits
above expectation.

X =1} K= |max|[03-2),03-5)] =0 Responsefismeasurement
model.

{X;=0t K= [max]| [-1(3-2),03-5)] =-1 Bobresponded L logit below
expectation.

FIT ANALYSIS OF RESPONSE SETS

Analyzing response sets is straightforward. The aver-
age of the absolute value of | K ; | values can be taken across

all responses of interest:
2 1K,

|Kai|=
er, -x) B3]
to obtain the “average logit noise,” where Ny . _ <} denotes
the total number of responses. Person | K ;| is obtained by ap-
plying Equation 3 for all person responses; item | Km | is calcu-
lated for all item responses.

It is also informative to take the average of certain
response subsets. Examples include (1) the subset of “negative”
K, ; values, and (2) the subset of “positive” K ; values. Subset
(1) indicates the magnitude of surprising “low” responses (e.g.,
occurring from sleeping, carelessness, etc.), and subset (2) in-
dicates the magnitude of surprising “high"” responses (e.g., lucky-
guessing).

The accuracy of K ; depends on parameter values
estimated from the data, but we know we estimate parameters
from noisy data in the first place (Z,, MS, ZSTD, and all param-
eter-dependent fit methods suffer this uncertainty). When
data noise is high, we cannot trust the accuracy of parameter
estimates, and therefore can no longer trust the accuracy of
K,; and other parameter-dependent fit statistics. In cases
where data is too noisy for the parameter-dependent fit statis-
tics to be useful, an alternative is a an estimate of Guttman fit:

G N o
N 4l
{ Xn=x}
which is the proportion of unexpected responses across the
relevant response set. G is linearized by the transformation
log(G/(1-G).

Itis also informative to change the numerator of Equa-
tion [4] to calculate the proportion of surprising “low” responses
(Nk <o) and “high” responses (Ny ., o).

Ginterprets Kni values as ordinal (possible values: ei-
ther K ;=0 or |K ;| >0), which renders it more robust than
|K,;|(and Z ;, MS, ZSTD) to inaccurate parameter estima-
tions. Hence, G can be considered a parameter-free fit statistic.
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