Thorndike's Scaling vs. Wood's Scoring

"Historical understanding very often depends upon our ability to recognize that, in the course of time, problems undergo subtle, and sometimes profound, changes in both formulation and substance." (Laudan, 1977, p. 241)

Ben Wood, Thorndike's student from 1919 to 1923, prepared a careful exegesis of Thorndike's essentials of a valid scale: objectivity, defined zero and unit, definition of function to be measured, consistency, and comparability. Wood claims that "practically all the material ... is taken from Thorndike's well-known treatise, or directly inferred from some of its propositions" (Wood, 1923, p.141 referring to Thorndike, 1913, p. 11-18). In spite of this, Wood adapts Thorndike's "scaling" tradition meaning of these measurement essentials to fit his own "test score" tradition. (Wood was previously a student of Truman Lee Kelley, a leading proponent of test reliability).

Both Thorndike and Wood consider objectivity the cornerstone of measurement. Thorndike views objectivity in a broad sense which included reliability and validity. In Thorndike's scaling tradition, objectivity is sought in the development of calibrated scales and variable maps that competent thinkers would agree upon as defining the latent variable. Wood's test score tradition leads him to focus instead on how tests can be scored reliably.

The development of scales with a defined zero and unit is important to both Thorndike and Wood. Wood's view reflects a test score tradition with a strong emphasis on test score reliability: "the essential quality of a good point of origin and of a good unit of measure is stability" (Wood p. 149). He recommends reporting test scores on a z- score scale with a sample mean to define the zero point and a sample standard deviation to define the unit of measurement. Thorndike recognizes that the zero point on the scale is arbitrary, and seeks to construct scales with units defined by a set of calibrated items. This view reflects a scaling tradition with close connections to Rasch measurement. Although Thorndike does not calibrate individuals and items onto an underlying latent variable scale simultaneously, he does attempt to develop calibrated scales that can be used to measure individuals.

Wood's third principle, that the function to be measured must be defined as adequately as possible, deals primarily with content validity. Wood emphasizes precise operational definitions of the variable measured and cautions against "the tendency to confuse identity of name with identity of function" (Wood p. 153). For Thorndike, the position of the facts on the item map of the latent variable plays the key role in defining the function measured: "An ideal scale, such as that for weight, is a series of perfectly defined amounts of a perfectly defined thing, the differences between any two of them being also perfectly defined, so that a series varying by steps of equal difference can readily be selected" (Thorndike, p. 13 and Wood, p. 150).

Consistency is defined by Thorndike and Wood as the unidimensionality of a scale. Thorndike thinks this so obvious that his discussion consists of two statements: "The series of facts used as a scale must be varying amounts of the same sort of thing or quality. This requirement needs no comment" (Thorndike p. 13 and Wood p. 153). Wood recommends inspecting test items in order to determine the consistency of the test, but, in his view, useful test scores can be obtained from any hodgepodge of combinations of items measuring visibly different content areas, such as reading and mathematics.

Comparability deals with what constitutes a useable scale. According to Wood, "a scale is valid only if it can be applied with reasonable ease and accuracy to the objects or facts to be measured" (Wood p. 157). But Wood's discussion of this principle is disjointed and difficult to understand because the test score tradition does not contain the concept of a calibrated item scale. Within Thorndike's scaling tradition, however, the idea of comparisons is fundamental. Items are calibrated through a comparison process, and the measurement of individuals is viewed as a comparison between an individual's ability and item difficulties on a latent variable scale. Consequently, "scales for mental and social measurements can be of great service in spite of gross inferiority [in ease of use and accuracy] to the common scales for physical facts" (Thorndike p. 16).

Thorndike's and Wood's theories of measurement offer important insights into major measurement problems identified in the first quarter of this century. Their theories illustrate how definitions of measurement problems changed as the dominant measurement tradition moved from a scaling tradition (Thorndike) to a test score tradition (Wood). Evaluation of "progress" in measurement theory depends on the measurement problem being addressed and the research tradition that underlies the evaluator's perspective.

Laudan L 1977. Progress and its problems: Towards a theory of scientific growth. Berkeley, CA: University of California Press.

Thorndike EL 1913. An introduction to the theory of mental and social measurements. 2nd Ed. Revised and Enlarged. New York: Teachers College

Wood BD 1923. Measurement in higher education. Yonkers-on-Hudson, NY: World Book Co.

Thorndike's scaling vs. Wood's scoring. Engelhard G Jr. … Rasch Measurement Transactions, 1992, 5:4 p.182


Please help with Standard Dataset 4: Andrich Rating Scale Model



Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

www.rasch.org welcomes your comments:

Your email address (if you want us to reply):

 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
July 31 - Aug. 3, 2017, Mon.-Thurs. Joint IMEKO TC1-TC7-TC13 Symposium 2017: Measurement Science challenges in Natural and Social Sciences, Rio de Janeiro, Brazil, imeko-tc7-rio.org.br
Aug. 7-9, 2017, Mon-Wed. In-person workshop and research coloquium: Effect size of family and school indexes in writing competence using TERCE data (C. Pardo, A. Atorressi, Winsteps), Bariloche Argentina. Carlos Pardo, Universidad Catòlica de Colombia
Aug. 7-9, 2017, Mon-Wed. PROMS 2017: Pacific Rim Objective Measurement Symposium, Sabah, Borneo, Malaysia, proms.promsociety.org/2017/
Aug. 10, 2017, Thurs. In-person Winsteps Training Workshop (M. Linacre, Winsteps), Sydney, Australia. www.winsteps.com/sydneyws.htm
Aug. 11 - Sept. 8, 2017, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Aug. 18-21, 2017, Fri.-Mon. IACAT 2017: International Association for Computerized Adaptive Testing, Niigata, Japan, iacat.org
Sept. 15-16, 2017, Fri.-Sat. IOMC 2017: International Outcome Measurement Conference, Chicago, jampress.org/iomc2017.htm
Oct. 13 - Nov. 10, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Oct. 25-27, 2017, Wed.-Fri. In-person workshop: Applying the Rasch Model hands-on introductory workshop, Melbourne, Australia (T. Bond, B&FSteps), Announcement
Jan. 5 - Feb. 2, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 10-16, 2018, Wed.-Tues. In-person workshop: Advanced Course in Rasch Measurement Theory and the application of RUMM2030, Perth, Australia (D. Andrich), Announcement
Jan. 17-19, 2018, Wed.-Fri. Rasch Conference: Seventh International Conference on Probabilistic Models for Measurement, Matilda Bay Club, Perth, Australia, Website
April 13-17, 2018, Fri.-Tues. AERA, New York, NY, www.aera.net
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
The HTML to add "Coming Rasch-related Events" to your webpage is:
<script type="text/javascript" src="http://www.rasch.org/events.txt"></script>

 

The URL of this page is www.rasch.org/rmt/rmt54e.htm

Website: www.rasch.org/rmt/contents.htm