
19. RELIABILITYAND SEPARATION

Validity and reliabilityhave been key concepts in measurement for eighty years. These two topics
command Chapters 1 and 2 of the Standards for Educational and Psychological Testing (1985) . The
Standards define reliability as "the degree to which test scores are free from errors," (1985, p.19) . The
"errors" referred to are measurement errors . The magnitude ofthese errors and the specification oftheir
source are necessary in orderto determine the efficacyofa measuring instrument . The reliability coefficient
is the traditional statistic intended to quantify reliability . Coefficients are commonly reported for test-
retest, multiple form and split-halfreplications . The purpose ofthis primer is to discuss how these topics
are dealt with in Rasch measurement and how this improves and, hence, supersedes traditional methods .

TRADITIONAL RELIABILITY

The KR20 for dichotomous responses (orits generalization, coefficient alpha)are estimates based
upon a single administration ofa test assumed tohave homogeneous items . Thesecoefficients areintended
to be an estimate ofthe test's reliability with respect to a single attribute postulated to underlie all the test
items . However, what any particular reliability actually refers to can only be whatever attribute the test
items actually define. Sufficienttime to answerthe items is assumed (timedtestsproduce spuriously high
coefficients) . The KR20 and its variants (coefficient alpha and KR21) are calculated by comparing a
numeratorbased on sampled itemp-values with a denominatorbased on the sampled persons' raw scores,
computed from the same response matrix ofpersons and items .

The statistics outlined in Figure 19.1 bring together the two contrasting elements which make up
the KR20. One element summarizes the test items in terms ofpq in whichp comes from the sampled item
p-values (where p = proportion correct) and q = I -p. Each item pq is the variance of a response to that
item for a "person" for whomthatp-value is theirprobability ofsucceeding on thatitem. Since thep-value
for an item is the sample mean ofthe dichotomous person responses to that item, thisp-value is what we
expect of an "average person" from that sample on that item.

Thep-value for an item describes a"sample average person's" probability ofsuccess on that item
and can be used to estimate an "average" sample response variance for that item . When these variances
are summed overthe items theyyield a score variance for a "person" whohas exactly thosep-values . This
"average" test score variance is the numerator in KR20.

TheKR20denominatoris the observed sample variance ofperson scores . Thus the KR20 combines
a "test" characteristic for a "typical" person sampled, based on item p-values, with a "sample"
characteristic from the observed sample variance of person raw scores .

CHARACTERISTICSOFTHE KR20 STATISTIC

1 .

	

Theitem response variance used is that ofan "average"person sampled . This is not the same
as an average of the persons' test score error variances . Ifthe sample score distribution is not
symmetric, then the error variance ofan "average" person must be different from the average
of individual persons' error variances .
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Figure 19.1

Traditional analysis ofa response matrix.
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2.

	

While

	

Pq provides a test score error variance for an "average" person, we know that the
sampled people vary, i.e ., the variance of their raw scores is greater than zero . Persons with
high or low scores have less score error variance than those with scores near fifty percent
correct where the score error variance is maximum. Since the "average" personvariance used
in the KR20 formula is always larger than the lower score error variance of persons with
extreme scores, it must always overestimate their score error variances .

3 .

	

If we want to anticipate reliability for a proposed application, a previously reported KR20
cannot be used as is, unless we know that the proposed sample will have the same score
distribution as the sample used for the reported KR20. This is quite unlikely .

4.

	

Theuse ofrawscores as the datafor calculating the sample variance is misleading to the extent
that raw scores are not linear representations of the variable they are intended to indicate .
Proof that raw scores cannot be linear representations canbe seen by plotting theraw scores
from ahard test against the raw scores from an easy test measuring the same attribute.

Figure 19.2 shows that the relationship between this pair of raw scores must be curvilinear. As
a result, neither set of raw scores can be linear indicators of what they purport to represent. But the
calculation ofmeansandvariances necessary toestimate reliabilities assumes linearityinthe numbers used .
Therefore, the calculation ofthese statistics from rawscores is always incorrect to some unknowndegree .

Ifweexpressed person measures in alinear, ratherthan curvilinear, form, then the samplevariance
estimates wouldbe improved .

Ifperson errorvariances were averaged instead ofusing the error variance ofan "average" person,
the information about sample test error conveyed by the reliability coefficient would also be improved .

RASCHRELIABILITY

These shortcomings in KR20, or any other reliability coefficients based on raw scores, are
remedied when a Rasch measurement analysis is made of the same data and reliability calculated from
Rasch results. Raschmeasurementproduces ameasure ofeachperson's ability on a linearscale calculated
from a logistic transformation oftheir raw score. Theresult is a linear comparison ofthe Hard andEasy
tests as shownin Figure 19.3 . These linear ability measures are numerically suitableforcalculating sample
variances.

We also have, for each person measured, an accompanying standard error ofmeasurement. These
individual errors canbe squared and summed to produce acorrect average error variance for the sample.
When these results are substituted for those in the traditional KR20 formula, the result is anew formula
which, while equivalentin interpretation, gives abetter estimateofreliability than KR20, coefficient alpha,
or any other reliability based on nonlinear raw scores .

Whenterms arereplaced inthis way, abetter reliability coefficient results because(1) thenumerical
arguments are now linear rather than curvilinear, and (2) the actual average error variance of the sample
is used instead of the error variance of an "average" person (see Figure 19.5).



Figure 19.2

Comparing scores from easy and hard tests.

HARD
TEST

T

Legend :

Explanation :

Implication :

Pt . A

	

= less than 50% on Hard Test .

Line BC = presumed linear relation between Easy and Hard test scores .

Arc BC = actual non-linear relation between Easy and Hard test scores .

Pt . D

	

= more than 50% on Easy Test .

0% on the Easy Test implies 0% on the Hard Test (Pt . B) .

100% on the Hard Test implies 100% on the Easy Test (Pt . C) .

But 50% on the Easy Test implies less than 50% on the Hard Test (Pt . A)

and 50% on the Hard Test implies more than 50% on the Easy Test (Pt . D) .

The score relationship between any pair of tests which differ in
difficulty cannot be linear.



Figure 19.3

Comparing measures from easy and hard tests using logit measures.
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When Easy Test scores and Hard Test scores are transformed
into linear measures, then a linear relation becomes possible .

PREDICTING RELIABILITY

In the application ofatest, it is the characteristics of thenewsample to which we intend to apply
the test, ratherthan adescription ofsome previous sample, that is our real concern. We want to know how
the test will work with thenewpeople whoare about to take it . We want arelevant reliability coefficient
which applies to the people we intend to test, rather than an obsolete one describing people who were
previously tested . Butfewpractitioners know howto usean oldKR20 to estimate anew KR20 for anew
sample.

In fact, it is easy to predict the reliability for a forthcoming sample, if we are willing to postulate
an expected mean and variance for this sample. Fromthese statistics andthe Rasch targeting formula we
can calculate the reliability of the test for the new application without reference to anyprevious sample
(Wright and Stone, 1979, 129-140) .

ADVANTAGES OFASEPARATION INDEX

Correlation-based reliability coefficients, however, are also nonlinear in implication. For
example, improvement of KR20 from .6 to .7 is nottwice the improvement from .9 to .95. Although the
difference in amount of reliability between .9 and .95 is half as much as the difference between .6 and .7 .
This half-as-much signifies twice the improvement in measurement precision. We can escape this



shortcoming of KR20 by replacing the traditional reliability coefficient with a Separation Index (G) (See
Figure 19.5) .

The Separation Index (G) is the ratio of the unbiased estimate of the sample standard deviation to
the rootmean square measurement error of the sample . It is on a ratio scale in the metric of the root mean
square measurement error of the test for the sample postulated . It quantifies "reliability" in a simple and
direct way and has aclear interpretation . Thisexpedites comprehension ofwhatchanges in reliability mean
in terms of measurement precision .

The estimation of separations for new samples is easy . No reference to any previous samples is
required . We need only estimate theexpected standard deviation ofour new target sample and then divide
this estimate by the average standard error of the intended test for such a sample . As in :

Separation :

	

G= SDT/SET
SDT.-	theexpected SD of the target sample
SET:

	

the test standard error of measurement for
such a sample, a value which is almost always
well approximated by SET = 2.5 / f-L-

SET can be estimated more precisely as SET =

	

C-IL where L is the number of items in the test
and C is a targeting coefficient (explained in Wright and Stone, 1979, pages 135-136 and tabled for most
test and target relationships on pages 214-215) . C varies between 4 and 9 depending on the range of item
difficulties in the intended test and the target sample's expected average percent correct on that test .

Here are somevalues of Cfortypical item difficultyranges andtypical targetsamplemean percents
correct:
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Values of the Targeting Coefficient C

Test ItemDifficulty Range in Logits

(See Wright and Stone, 1979, p . 214)

SET = C-IL

L = Number of
Items in Test

1 2 3 4 5 6

50 4 .0 4 .4 4.8 5.3 5.8 6.8

60 4 .4 4 .4 4.8 5 .3 6 .2 6.8

70 4.8 5 .3 5.3 5 .8 6.8 7.3

80 6.2 6.8 6 .8 7.3 7.8 8 .4



Thus, SET is easy to approximate well enough for the calculation of an expected target
sample. Separation G: G = SDT/SET.

If an expected reliability is also desired, it can be obtained from : R = G2 / (1 +G2).

We usetheRaschModelin our example. But this Separation Index is applicable to any latent trait
model. With it, one canpredict the reliability of a test with any sample to be used in astudy, if one can
specify an expected samplemean andvariance. No information aboutanyprevious samples is necessary .

The Standards (1985, page 22) recommend that, "Standard errors ofmeasurementbe reported at
critical score levels ." Rasch measurementanalysis routinely provides standard errors for every possible
test measure along the variable as shown in Figure 19.4 . Thus, the Rasch approach meets this
recommendation completely . Ifreliability, as definedby the Standards, is the degree to which test scores
are free from errors ofmeasurement, then it follows that every ability measureshould be accompanied by
a standard error as an index of the degree to which this criterion is met for that measure.

TheRaschmeasurementerrors satisfy this goal by providing individual errors ofmeasurement for
every observable measure. If acollective index of reliability is desired, the Rasch Separation Index is
more useful in basis and numerical form than the traditional indices of reliability .

Figure 19.5 summarizes the calculation of the Separation Index.

Rasch Separation Indexes

G= [R/(1-R)]

Corresponding
Reliability Coefficients

R=G2 /(1+ G2 )

1 0.50
2 0.80
3 0.90
4 0.94
5 0.96



Figure 19.5

Rasch person separation index.

G = STB / RMSEB where

STB2 = SDBZ -MSEB
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RMSEB2 = MSEB = Y, SEBn / N
n

Bn = logit measure of person n
SEBn = standard error of Bn

so G2 =R/(1-R) andR=G2 /(1+G2 )

and R =1- (MSEB / SDBZ ) is

=1- (VR / VS) = [(L -1) / L]KR20

with VR and VS as defined in Figure 19.1

(see Wright and Masters, 1982, Figure 1, pp . 105-106)

note : MSEB = C l L

	

in which 4 < C < 9
and C= 5 or 6 is typical .

(See Wright and Stone, 1979, pp . 134-136)
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