please vetum to Ben whight befor Sept 13

August 1967
G.Rasch,Jon Stene

Some remarks concerning inference about items

with more than two categories.
ie. Pair wise estimalimand fit!

1. The model.

Consider an item with m categories of response denoted by

$$
\begin{equation*}
x:\left(x^{(1)}, \ldots, x^{(\mu)}, \ldots, x^{(m)}\right) . \tag{1.1}
\end{equation*}
$$

This item is given to an individual denoted by ν. The probability of the response $\mathbf{x}^{(\mu)}$ in this situation is

$$
\begin{equation*}
\mathrm{p}\{\mathrm{x}(\mu) \mid \nu, i\}=\frac{\xi_{\nu \mu} \varepsilon_{i \mu}}{\lambda_{+i}}, \quad \mu=1,2, \ldots, m \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{\nu i}=\sum_{\mu=1}^{m} \xi_{\nu \mu} \varepsilon_{i \mu} . \tag{1.3}
\end{equation*}
$$

The vector

$$
\begin{equation*}
\varepsilon_{\nu}=\left(\xi_{\nu 1}, \ldots, \xi_{\nu m}\right) \tag{1.4}
\end{equation*}
$$

is a parameter characterizing individual ν and the vector

$$
\begin{equation*}
\varepsilon_{i}=\left(\varepsilon_{i 1}, \cdot / \cdot, \varepsilon_{i m}\right) \quad \epsilon_{i \mu} \tag{1.5}
\end{equation*}
$$

characterizes item i.
By introducing the selection vector

$$
\begin{equation*}
a_{\nu i}=(0, \ldots, 0,1,0, \ldots, 0) \tag{1.6}
\end{equation*}
$$

i.e. a vector of order m with a 1 as its μ^{\prime} th component and zeros elsewhere, (1.2) may be written in the form

$$
\begin{equation*}
p\left\{x^{(\mu)} \mid \nu, i\right\}=\frac{\xi_{\nu}^{a_{\nu i} \varepsilon_{i}}{ }_{\nu i j}}{\gamma_{\nu i}} \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{\nu}{ }^{a_{\nu i}}=\xi_{\nu \mu} \tag{1.8}
\end{equation*}
$$

and
（1．9）

$$
\varepsilon_{i}^{a_{\nu i}}=\varepsilon_{i \mu}
$$

and as）
where $\xi_{\nu}, \varepsilon_{i}$ and $a_{\nu i}$ are（given in（1．4），（1．5）and（1．6）， respectively．
feta questionnaire with k items，each with m response categories bs given to N persons．

In this note some of the problems concerning statistical inference about the ε＇s of the different items will be discussed． when Y ．

2．On the estimation of the components of the item parameter S
Let us consider two items i and j from the questionnaire． In the following table the observations are summarized．The different elements of the table denote the number of individuals with the corresponding combination of responses i．e． b_{gh} is the number of persons among the N voselved wing que ne response g tho item i andesphen item j and $b_{h g}$ is the number of persons who que隺 response h 傕item i and g 执item j ．

Hem j

where the marginals are defied as

$$
\begin{equation*}
\mathrm{b}_{\mathrm{go}}=\sum_{\mathrm{h}=1}^{m} \mathrm{~b}_{\mathrm{gh}}-\mathrm{b}_{\mathrm{gg}}=\sum_{\mathrm{h} \neq \mathrm{g}} \mathrm{~b}_{\mathrm{gh}} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{o h}=\sum_{g=1}^{m} b_{g h}-b_{h h}=\sum_{g \neq h} b_{g h}, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
N=\sum_{g=1}^{m} \sum_{h=1}^{m} b_{g h} \tag{2.4}
\end{equation*}
$$

The selection vector (1.6) will be denoted by e_{g} when the response is at the category g, and e_{h} when it is at category h, i.e.

$$
\begin{align*}
& a_{\nu i}=(0, \ldots, 0,1,0, \ldots, 0,0,0, \ldots, 0)=e_{g} \tag{2.5}\\
& a_{\nu i}=(0, \ldots, 0,0,0, \ldots, 0,1,0, \ldots, 0)=e_{h}
\end{align*}
$$

From (1.7) we derive by means of (2.5) and (2.6) that the conditional probability of the response g bo item i and h tor item j, given that the individual o. ν has mode exactly one g-response and one h-response on these two items.

$$
p\left\{a_{\nu i}=e_{g}, a_{\nu j}=e_{h} \mid a_{\nu i}+a_{\nu j}=e_{g}+e_{h}\right\}=\frac{\varepsilon_{i}{ }^{e} g{ }^{\varepsilon_{j}} e_{h}}{\varepsilon_{i} g_{\varepsilon_{j}}{ }_{j}{ }_{h}+\varepsilon_{i}{ }_{h_{h}} \varepsilon_{j} e_{g}}
$$

$$
\begin{equation*}
=\frac{\varepsilon_{i g} \varepsilon_{j h}}{\varepsilon_{i g}{ }^{\varepsilon_{j h}}+\varepsilon_{i h} \varepsilon_{j g}}=\frac{\frac{\varepsilon_{i g}}{\varepsilon_{j g}}}{\frac{\varepsilon_{i g}}{\varepsilon_{j g}}+\frac{\varepsilon_{i h}}{\varepsilon_{j h}}} . \tag{2.7}
\end{equation*}
$$

By introducing
(2.8)

$$
\frac{\varepsilon_{i g}}{\varepsilon_{j g}}=\delta_{g} \quad \text { and } \quad \frac{\varepsilon_{i h}}{\varepsilon_{j h}}=\delta_{h}
$$

(2.7) takes the form

$$
\begin{equation*}
p\left\{a_{\nu i}=e_{g}, a_{\nu j}=e_{h} \mid a_{\nu i}+a_{\nu j}=e_{g}+e_{h}\right\}=\frac{\delta_{g}}{\delta_{g}+\delta_{h}} \tag{2.9}
\end{equation*}
$$

Let $g \neq \mathrm{h}$, (otherwise (2.7) is equal information contained), and let

$$
\begin{equation*}
b_{g h}+b_{h g}=n_{g h} \tag{2.10}
\end{equation*}
$$

From (2.9) follows by the binomial law, that

$$
\begin{equation*}
p\left\{b_{g h} x / 2 h_{g} g_{g h}^{n_{g h}^{x}}\right\}=\binom{n_{g h}}{b_{g h}} \frac{\delta_{g h}^{b_{g h}} \delta_{h g}}{\left(\delta_{g}+\delta_{h}\right)^{n_{g h}}} \tag{2,11}
\end{equation*}
$$

Since all \mathbb{N} persons are considered to react stochastically independently and each person is contained in Some one of the elements of (2.1), it follows that the probability of the actual set of results outside the diagonal in (2.1) is

$$
\begin{equation*}
\prod_{n} \delta_{g}^{b_{g h}} \prod_{n<h} \delta_{h}^{b_{h g}}=n_{y_{n}-b_{g}} y_{y} \tag{2.12}
\end{equation*}
$$

$p\left\{\left(\left(b_{g h}, b_{h g}\right)\right) \mid\left(\left(n_{g h}\right)\right)\right\}=$

where $\left(\left(b_{g h}, b_{h g}\right)\right)$ is the whole set of corresponding pairs laying. symmetrically about the diagonal and $\left(\left(n_{g h}\right)\right)$ is the set of $n_{g h}$'s. It is seen that

$$
\begin{equation*}
\sum_{h=2}^{m} \sum_{g<h} n_{g h}=N-\sum_{g=1}^{m} b_{g g}=\sum_{g=1}^{m} b_{g o}=\sum_{h=1}^{m} b_{o h} \tag{2.1こ}
\end{equation*}
$$

In order to make the idea simple, consider the case $m=3$. Here (2.1) takes the form

The marginals are defined in (2.2),(2.3) and (2.4). The probability (2.12) is then rec to them

$$
\begin{aligned}
& p\left\{\left(b_{12}, b_{21}\right),\left(b_{13}, b_{31}\right),\left(b_{23}, b_{32}\right) \mid n_{12}, n_{13}, n_{23}\right\}= \\
& =\binom{n_{12}}{b_{12}}\binom{n_{13}}{b_{13}}\binom{n_{23}}{b_{23}} \frac{\delta_{1}^{b_{12}} \delta_{2}^{b_{21}}}{\left(\delta_{1}+\delta_{2}\right)^{n_{12}}} \frac{\delta_{1}^{b_{13}} \delta_{3}^{b_{31}}}{\left(\delta_{1}+\delta_{3}\right)^{n_{13}}} \frac{\delta_{2}^{b_{23}} \delta_{3}^{b_{32}}}{\left(\delta_{2}+\delta_{3}\right)^{n_{23}}}
\end{aligned}
$$

Collect ur $\delta_{1}, \delta_{2}, \delta_{3}$

$$
\begin{aligned}
& =\binom{n_{12}}{b_{12}}\binom{n_{13}}{b_{13}}\binom{n_{23}}{b_{23}} \frac{\delta_{1}^{b_{12}+b_{13}} \delta_{2}^{b_{21}+b_{23}} \delta_{31}^{b_{31}+b_{32}}}{\left(\delta_{1}+\delta_{2}\right)^{n_{12}}\left(\delta_{1}+\delta_{3}\right)^{n_{13}}\left(\delta_{2}+\delta_{3}\right)^{n_{23}}} \\
& =\binom{n_{12}}{b_{12}}\binom{n_{13}}{b_{13}}\binom{n_{23}}{b_{23}} \frac{\delta_{1}^{b_{10}} \delta_{2}^{b_{20}} \delta_{3}^{b_{30}}}{\left(\delta_{1}+\delta_{2}\right)^{n_{12}}\left(\delta_{1}+\delta_{3}\right)^{n_{13}}\left(\delta_{2}+\delta_{3}\right)^{n_{23}}}
\end{aligned}
$$

This expression is homogenous in the δ 's therefore only the relations between them may be estimated. In order to carry out the estimation some restriction has to be specified egg.
or
Y why bot soy a word about

If $\delta_{3} \Rightarrow 1$

$$
\begin{gather*}
\delta_{1} \delta_{2} \delta_{3} \Rightarrow 1 \tag{2.16}\\
\delta_{3} \Rightarrow 1 \tag{2.17}
\end{gather*}
$$

In the last case the right side of (2.15) can be written in the form

$$
\begin{align*}
& \text { arm } \tag{2.18}\\
& \binom{n_{12}}{b_{12}}\binom{n_{13}}{b_{13}}\binom{n_{23}}{b_{23}} \frac{\delta_{1}^{\prime} b_{10} \delta_{2}^{\prime b_{20}}}{\left(\delta_{1}^{\prime}+\delta_{2}^{\prime}\right)^{n_{12}}\left(\delta_{1}^{\prime}+1\right)^{n_{13}}\left(\delta_{2}^{\prime}+1\right)^{n_{23}}} .
\end{align*}
$$

from which the following set of maximum likelihood equations for estimating

$$
\begin{equation*}
\delta_{1}^{\prime}=\frac{\delta_{1}}{\delta_{3}}=\frac{\varepsilon_{i 1}}{\varepsilon_{j 1}} / \frac{\varepsilon_{i 3}}{\varepsilon_{j 3}} \tag{2.19}
\end{equation*}
$$

explon

$$
\left.\begin{array}{l}
\frac{b_{12}}{n_{12}} \approx \frac{\delta_{1}}{\delta_{1}+\delta_{2}} \\
\frac{b_{13}}{n_{13}} \approx \frac{\delta_{1}}{\delta_{1}+\delta_{3}}
\end{array}\right\} \begin{aligned}
& \frac{b_{12+} b_{12}}{\delta_{1}} \approx \frac{n_{12}}{\delta_{1}+\delta_{2}}+\frac{n_{13}}{\delta_{1}+\delta_{3}}
\end{aligned}
$$

$$
\begin{aligned}
& b_{12} \delta_{1}+b_{12} \delta_{2} \approx \eta_{12} \delta_{1} \quad b_{21} \delta_{2}+b_{21} \delta_{1} \approx n_{12} \delta_{2} \\
& b_{13} \delta_{1}+b_{13} \delta_{3} \approx n_{13} \delta_{1} \quad b_{23} \delta_{2}+b_{22} \delta_{3} \approx n_{13} \delta_{2} \\
& \delta_{2} x \delta_{1}\left(l_{12}-b_{12}\right) / b_{12}=\delta_{1}\left(b_{21} / b_{12}\right) \\
& \delta_{3} \approx \delta_{1}\left(b_{31} / b_{13}\right) \\
& \delta_{3} \approx \delta_{2}\left(b_{32} / b_{32}\right) \\
& \left(\log \delta_{1}-\log \delta_{1} \approx \log \left(b_{11} / b_{11}\right)=\Phi_{11}=0\right. \\
& \text { or }\left[\begin{array}{lll}
\delta_{1} / \delta_{2} & \approx & b_{12} / b_{21} \\
\delta_{1} / \delta_{3} & \approx & b_{13} / b_{31} \\
\delta_{1} / \delta_{3} & \approx & b_{23} / b_{32}
\end{array}\right] \\
& \left\{\begin{aligned}
\frac{\gamma}{\log \delta_{1}-\log \delta_{2} \approx \log \left(b_{12} / b_{21}\right)} & =l_{12} \\
\log \delta_{1}-\log \delta_{3} \approx & =l_{13}
\end{aligned}\right. \\
& \delta_{2} \delta_{3} \approx b_{2} / b_{2}-l_{2} \delta_{3} \lambda
\end{aligned}
$$

note $3 \log \delta_{1}-(\underbrace{\left(\log \delta_{1}+\log \delta_{2}+\log \delta_{3}\right.}_{\Rightarrow 0}) \approx l_{11}+l_{12}+l_{13}=l_{1+}$
so $\quad \log \delta_{1} x l_{1}$. ar in gevend $\log \delta_{y} \approx l_{j}$.

$$
\begin{aligned}
& \delta_{j}=\epsilon_{i g} / \epsilon_{j g} \\
& \text { po if } \sum_{g}^{m} \log \delta_{g} \Rightarrow 0 \\
& \sum_{g} \sum_{r}^{n} \log \epsilon_{r y} \Rightarrow 0 \\
& \log _{2} \approx \log \epsilon_{i g} \\
& \log \delta_{g}=\log \epsilon_{y} \neq \log \epsilon_{j g} \neq l_{i j g} . \\
& l_{i j g h}=\log \left(b_{i j g h} / b_{i j h g}\right) \\
& l_{\text {Lgg }}=\sum_{n}^{m} l_{\text {Ligh }} / m
\end{aligned}
$$

Returning to the general case it is seen the formula (2.12) (may be written in the form

$$
\mathrm{p}\left\{\left(\left(b_{g h}, b_{h g}\right)\right) \mid\left(\left(n_{g h}\right)\right)\right\}=\prod_{g=1}^{m} \prod_{h>g}\left(b_{g h}^{g_{g h}}\right) \frac{\prod_{g=1}^{m} \prod_{g=1}^{m} \prod_{h>g}\left(\delta_{g}+\delta_{h}\right)^{n} \delta_{g h} h \neq g}{j_{g h}}
$$

(2.22)

$$
=\prod_{g=1}^{m} \prod_{h>g}\left({ }_{b_{g h}}^{n_{g h}}\right) \frac{\prod_{g=1}^{m} \delta_{g}^{b_{g o}}}{\prod_{g=1}^{m} \prod_{h>g}\left(\delta_{g}+\delta_{h}\right)^{n_{g h}}}
$$

$\operatorname{since} b_{g o}=\sum_{h \neq g}^{m} b_{g h}$

if $\quad u g g \Rightarrow b_{q 9}+b_{q 9}=2 b_{g g}$
Hen $\sum_{h=1}^{n g} b_{g h} \pi \sum_{h=1}^{n g} \delta_{g} n_{g h} /\left(\delta_{g}+\delta_{h}\right)$
would $\delta_{g} \approx \sum_{h=1}^{M M} b_{g h} / \sum_{h=1}^{M}\left(n_{g h} /\left(\delta_{j}+\delta_{h}\right)\right)$ iterated
be any use?
or solve this with Meatus wetrod for δg

to redeflue $F=\delta_{g}-\sum_{b \neq g} b_{g h} / \sum_{h \in g}\left(u_{g h} /\left(\delta_{g+} \delta_{i n}\right)\right)=\delta_{g}-b_{j+} / \gamma_{j}$

$$
\left.F^{\prime}=1-\left(\sum_{h=g} b_{g h}\right)(-1)\left(\gamma_{g}^{-2}\right)\left(\sum_{h=g} n_{g h}(-1)\left(\delta_{g}+\delta_{h}\right)^{-2}\right) \quad, \quad\right)
$$

which may be solved by usual numerical methods.
3. Control of the model.

Consider first the case $m=3$. Formula (2.15) shows that $\left(n_{12}, n_{13}, n_{23}\right)$ and $\left(b_{10}, b_{20}, b_{30}\right)$ together form a set of sufficient estimators for the model. The probability for the obtained set $\left(b_{10}, b_{20}, b_{30}\right)$ when the set $\left(n_{12}, n_{13}, n_{23}\right)$ is given is

$$
\begin{aligned}
& p\left\{\left(b_{10}, b_{20}, b_{30}\right) \mid\left(n_{12}, n_{13}, n_{23}\right)\right\}= \\
& (3.1) \quad \frac{\delta_{10} \delta_{10} \delta_{20}^{b_{20}} \delta_{3}^{b_{30}}}{\left(\delta_{1}+\delta_{2}\right)^{n_{12}\left(\delta_{1}+\delta_{3}\right)^{n_{13}}\left(\delta_{2}+\delta_{3}\right)^{n_{23}}} \begin{array}{l}
b_{12}+b_{13}=b_{10} \\
b_{21}+b_{23}=b_{20} \\
b_{31}+b_{32}=b_{30}
\end{array}} \begin{array}{l}
\binom{n_{12}}{b_{12}}\binom{n_{13}}{b_{13}}\binom{n_{23}}{b_{23}}
\end{array}
\end{aligned}
$$

Here we introduce the notation
(3.2)

$$
\begin{aligned}
\gamma\left(\left(b_{10}, b_{20}, b_{30}\right) \mid\left(n_{12}, n_{13}, n_{23}\right)\right)= & \underset{b_{12}+b_{13}=b_{10}}{ }\binom{n_{12}}{b_{12}}\binom{n_{13}}{b_{13}}\binom{n_{23}}{b_{23}} \\
& b_{21}+b_{23}=b_{20} \\
& b_{31}+b_{32}=b_{30}
\end{aligned}
$$

The conditional probability of the obtained $\left(\left(b_{g h}, b_{h g}\right)\right)$
(given the sufficient estimators are then derived from (3.1), (3.2) and (2.15)
(3.3) $\mathrm{p}\left\{\left(\left(\mathrm{b}_{\mathrm{gh}}, \mathrm{b}_{\mathrm{hg}}\right)\right) \mid\left(\mathrm{b}_{\mathrm{go}}\right),\left(\left(n_{g h}\right)\right)\right\}=\frac{\binom{n_{12}}{b_{12}}\binom{n_{13}}{b_{13}}\binom{n_{23}}{b_{23}}}{\gamma\left(\left(b_{10}, b_{20}, b_{30}\right) \mid\left(n_{12}, n_{13}, n_{23}\right)\right)}$
where the δ 's are eliminated. By means of (3.3) a nonparametric control of the model may take place.

As an example of such a control consider the following. example. Let the items i and j be given to two different groups of individuals. The hyposis to be tested is that the relation between the two items is the same for the two groups, i.e.
(3.4) $\delta_{11}=\delta_{12}=\delta_{1}, \quad \delta_{21}=\delta_{22}=\delta_{2}, \delta_{31}=\delta_{32}=\delta_{3}$.

Contol depereds an cirtera
Systeviatic pastitan at data
to challoyge sougle -freedom
a) divide feurors $\}$ test statistal of es x unctes
b) dinde iteurs
which is of the assumptions of the model. Let the elements of (2.14) be denoted by $b_{\text {Eh }}^{\prime}$ for the first group and theresporing elements for the second soup by $\mathrm{b}_{\mathrm{gh}}^{\prime \prime}$.

For the first group we get
(3.5) $\mathrm{p}\left\{\left(\left(\mathrm{b}_{\mathrm{gh}}^{\prime}, \mathrm{b}_{\mathrm{hg}}^{\prime}\right)\right) \mid\left(\left(\mathrm{n}_{\mathrm{gh}}^{\prime}\right)\right)\right\}$

$$
=\binom{n_{12}^{\prime}}{b_{12}^{\prime}}\binom{n_{13}^{\prime}}{b_{13}^{\prime}}\binom{n_{23}^{\prime}}{b_{23}^{\prime}} \frac{\delta_{11}^{b_{10}} \delta_{21}^{b_{20}} \delta_{31}^{b_{30}}}{\left(\delta_{11}+\delta_{21}\right)^{n_{12}^{\prime}}\left(\delta_{11}+\delta_{31}\right)^{n_{13}^{\prime}}\left(\delta_{21}+\delta_{31}\right)^{n^{\prime}} 23}
$$

and hence

$$
p\left\{\left(b_{10}^{\prime}, b_{20}^{\prime}, b_{30}^{\prime}\right) \mid\left(n_{12}^{\prime}, n_{13}^{\prime}, n_{23}^{\prime}\right)\right\}=
$$

$(3.6)=\frac{\delta_{11}^{b_{10}^{\prime}} \delta_{21}^{b_{20}^{\prime}} \delta_{31}^{b_{30}^{\prime}}}{\left(\delta_{11}+\delta_{21}\right)^{n_{12}^{\prime}}\left(\delta_{11}+\delta_{31}\right)^{n_{13}^{\prime}}\left(\delta_{21} \delta_{31}\right)^{n_{23}^{\prime}}} \cdot \gamma\left(\left(b_{g o}^{\prime}\right) \mid\left(\left(n_{g h}^{\prime}\right)\right)\right)$

For the second group the corresponding probability is

$$
p\left\{\left(b_{10}^{\prime \prime}, b_{20}^{\prime \prime}, b_{30}^{\prime \prime}\right) \mid\left(n_{12}^{\prime \prime}, n_{13}^{\prime}, n_{23}^{\prime \prime}\right)\right\}=
$$

$$
\begin{equation*}
=\frac{\delta_{12}^{b_{10}^{\prime \prime}} \delta_{22}^{b_{20}^{\prime \prime}} \delta_{32}^{b_{30}^{\prime \prime}}}{\left(\delta_{12}^{\delta^{+}} \delta_{22}\right)^{n_{12}^{\prime \prime}}\left(\delta_{12}+\delta_{32}\right)^{n_{13}^{\prime \prime}}\left(\delta_{22^{+}} \delta_{32}\right)^{\mu_{2}^{\prime \prime}}} \cdot \gamma\left(\left(b_{g 0}^{\prime \prime}\right) \mid\left(\left(n_{g h}^{\prime \prime}\right)\right)\right) \tag{3.7}
\end{equation*}
$$

If the haspuption (3.4) holds, then the probability is also by (3.1) N The conditional probability for the obtained results in the two groups given the total result

where

(3.8) $b_{g h}^{\prime}+b_{g h}^{\prime \prime}=b_{g h}, b_{g o}^{\prime}+b_{g o}^{\prime \prime}=b_{g o}, n_{g h}^{\prime}+n_{g h}^{\prime \prime}=n_{g h}$ for all (g,h);
which follows

$$
\left.\mathrm{p}\left\{\left(b_{g o}^{\prime}\right),\left(\left(n_{g h}^{\prime}\right)\right),\left(b_{g o}^{\prime \prime}\right) \notin\left(n_{g h}^{\prime \prime}\right)\right) \mid\left(b_{g o}\right),\left(\left(n_{g h}\right)\right)\right\}=
$$

$$
\begin{equation*}
=\frac{\gamma\left(\left(b_{g o}^{\prime}\right) \mid\left(\left(n_{g h}^{\prime}\right)\right)\right) \cdot \gamma\left(\left(b_{g o}^{\prime \prime}\right) \mid\left(\left(n_{g h}^{\prime \prime}\right)\right)\right)}{\gamma\left(\left(b_{g o}\right) \mid\left(\left(n_{g h}\right)\right)\right)} \tag{3.9}
\end{equation*}
$$

where the δ 's are eliminated. If (3.9) is too small the hypothesis (3.4) is rejected.

It is possible to carry out this procedure for all pairs of items.

If the probability (3.9) is small for a large number of these pairs, the conclusion is that the two groups react different to the items, and the model assumptions are not fulfilled.

Consider then the general case.
From (2.22) it is derived that

$$
\begin{equation*}
p\left\{\left(b_{g o}\right) \mid\left(\left(n_{g h}\right)\right)\right\}=\frac{\prod_{g=1}^{m} \delta_{g}^{b_{g o}}}{\prod_{g=1}^{m} \prod_{h>g}\left(\delta_{g}+\delta_{h}\right)^{n_{g h}}} \cdot \gamma\left(\left(b_{g o}\right) \mid\left(\left(n_{g h}\right)\right)\right) \tag{3.10}
\end{equation*}
$$

where
(3.11) $\left.\gamma\left(\left(b_{g o}\right) \mid\left(\left(n_{g h}\right)\right)\right)=\sum_{\substack{\left(\sum_{\begin{subarray}{c}{~} }}^{m}\right.} \\{h \neq g}\end{subarray}} \prod_{b_{g h}}=b_{g o}^{m} ; g=1, \ldots, m\right)<\binom{n_{g h}}{b_{g h}}$

If the two items are presented to two different groups, it may be of interest to test whether the itemparameters are equal for the two groups or not, ie.

$$
\begin{equation*}
\delta_{11}=\delta_{12}=\delta_{1}, \ldots, \quad \delta_{m 1}=\delta_{m 2}=\delta_{m} \tag{3.12}
\end{equation*}
$$

The testing procedure is carried through in the same way as for $\mathrm{m}=3$, i.e. we consider

$$
\mathrm{p}\left\{\left(\mathrm{~b}_{\mathrm{go}}^{\prime}\right),\left(\left(\mathrm{n}_{\mathrm{gh}}^{\prime}\right)\right),\left(\mathrm{b}_{\mathrm{go}}^{\prime \prime}\right),\left(\left(\mathrm{n}_{\mathrm{gh}}^{\prime \prime}\right)\right)\left[\left(\mathrm{b}_{\mathrm{go}}\right),\left(\left(\mathrm{n}_{\mathrm{gh}}\right)\right)\right\}=\right.
$$

(3.13)

$$
=\frac{\gamma\left(\left(b_{g o}^{\prime}\right) \mid\left(\left(n_{g h}^{\prime}\right)\right)\right) \cdot \gamma\left(\left(b_{g o}^{\prime \prime}\right) \mid\left(\left(n_{g h}^{\prime \prime}\right)\right)\right)}{\gamma\left(\left(b_{g o}\right) \mid\left(\left(n_{g h}\right)\right)\right)}
$$

where the different $\gamma^{\prime} s$ in (3.13) are formed in analogy to (3.11).

This method may easily be generalized th er types (of control. for example?

1) fri the sake of education - wherever you Amy "ma yderive" - it would be better to slow how to do it
2) Why wot nuclide a wetod of estimation and restate ever of these estivates
