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RASCH ITEM ANALYSIS BY HAND

Introduction
One of the ironies of progress in psychometrics is that

as theories of measurement become more and more sophisticated,
the amount of computation required to produce useful results
becomes more and more overwhelming. When computers do the
work conveniently we may not worry much about the volume of
calculation. However, there are situations in which would-be
practitioners do not have easy access to a suitably
programmed computer and so must either give up or fall back
on the needlessly inadequate traditional methods.

Nowhere in psychometrics is this more apparent than in
item analysis and test construction. Wishing to be knowledge

able and up-to-date, practitioners turn to latent trait
theories of measurement (Rasch, 1960; Lord and Novick, 1968)
only to find that in order to determine the estimates of item
difficulty, they must be able to solve series of implicit

equations which seem quite beyond hand calculation (Andersen,
1972; Lord, 1968).

Tn 1969 Wright and Panchapakesan described a procedure
for item calibration based on the measurement theory of G.

Rasch (1960, 1966). Although the procedure still involved
considerable computation, the authors justified an approach

in which the computations were greatly simplified. In a
further development of these ideas, Wright and Douglas

(1975b), compared three procedures for use with the Rasch



model from the point of view of practical efficiency and

accuracy and gave a simplified account of the Wright-Pan-

chapakesan "unconditional" method (UCON)
In this article we will describe a method of estimation

so simple and straightforward that it can easily be done by
hand. This method will be referred to as the "normal
approximation” method (PROX). We will show that it produces

item difficulty estimates (and their corresponding standard
errors) which compare favourably with those obtained from
the more computationally demanding UCON method. The PROX
method relies on a working assumption about the distribution
of person ability in the calibrating population and item
difficulty in the test, an assumption the utility of which
we will document and for which we will detail the effects of
departure.

Whilst we offer in the appendix a Fortran program for
the PROX calibration algorithm (ome which effects a dramatic
saving in time and cost over that required by UCON), the
simplicity of PROX makes it possible to set up the procedure

in a form convenient for hand calculation. First we will

discuss the basis of our approximations, then the equations
themselves, and finally present results from simulated and

real data which support the accuracy of PROX.
I Di ibutional Assumption

Traditional methods of item analysis which use the



proportion of subjects correct on a given item directly as
the estimate of item "difficulty," are sample-dependent. It
was towards dealing with this awkward situation that Rasch

developed his simple logistic model and for which the term

"sample free" test calibration was introduced (Wright, 1968).
For the PROX method we use a distributional assumption, not

because we believe that abilities are actually distributed
normally, but because we have found that the observed ability
distributions of most calibrating samples as well as the
difficulty composition of most tests can be well enough

described by their mean and variance to provide accurate
sample free item estimates from these two statistics alone.
Indeed, Lord (1955) claims that observed test-score distri-

butions are approximately normal. Sabers and Klausmeier

(1971) report that the "skewness and kurtosis indices de-
rived from samples drawn from simulated normal populations

varied more from normal values than those observed in a

random sample of 200 actual score distributions.”
In our work on best test design (Wright and Douglas,

1975a), where we were concerned with achieving optimal

measurement in the presence of calibrated items, the crucial
question was: what distribution of items in a test achieves
the most precise measurement for the most persons? In the

course of that study we considered a normal distribution
of item difficulties with the bulk of the items "at the



center” and a few scattered at the extremes. A consequence

was the derivation of explicit expressions for the person
measure, or ability estimate b , and its standard error
SE(b.), for any raw score r, when items were normally

distributed in difficulty with a known mean and standard
deviation.

The derived expressions were found to be exceptionally
accurate approximations to the maximum likelihood estimates.

Because of the symmetric way in which item and ability
parameters enter into the Rasch model, we also investigated

the situation in which the population of abilities from which
the calibration sample was drawn was also assumed to be

normal. The use of this idea to expedite the calibration

of items was first suggested by Leslie Cohen in 1972 and has
since been further developed by him (Cohen, 1976). We
include his most recent suggestions in the basic expressions
from which the PROX calibrating algorithm is derived.

The Calibrating Expressions for PROX
If the set of item parameters selected to form a test

are distributed normally with mean §. and variance (yt)?

and administered to a sample with ability variance (X0)?,
then explicit expressions for the estimate of the latent
ability band its standard error, SE(b ) corresponding to
a raw score r, are given by
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where (i) there are L items in the test,
(ii) the constants 8.35 = 2.897 = 1.7% arise because these

approximations use the relation between the normal
and logistic cumulative distributions,
|e(x) - ¥(1.7x)|<.01 for all x, as a basis for ex-

changing them in the derivation of the approximation,
and

(iii) the error coefficient C_ is for all practical
purposes confined between 2 and 3 and varies with
the relative score f_ and test width (yo)* as

given in Table 3.
In the reverse situation we assume that the population of per-

sons from which the calibration sample has been drawn is normally
distributed with mean 8. and (Ac)?. The analogous expressions are

L (N-5.)
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where (i) N is the number of persons in the calibrating

sample,
(ii) S, is the number of persons with item i cor

rect (known as the item score), and
(iii) 4; is the estimate of the item difficulty.

The difference between (1) and (4) is due to the require-
ment that the item parameter estimates be anchored in some way

quite independent of the distribution of abilities; a con-
venient way to do this is to center them at zero. Equation

(4) satisfies this condition and simplifies equation (1) to

b, = Xb.
Whilst we may assume the distributional form of abilities

to be normal, we must estimate the parameters X, vy, t* and o®

from observed data. In (2) and (5) we will replace t* and o*

by their sample statistics,
vy SE,Ep een

1

and gp =Zn, (bp - b22/(N-1),
11

where  b? =Ln, b/s

and use them to calculate estimates of the expansion factors,
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A Computing Algorithm

A concise implementation of the above procedure, suit-

able for computer programming, is facilitated by the
following steps.

(i)

(ii

Edit the binary data matrix of person by item
responses such that no person has a zero or a
perfect score and no item has a zero or a per-
fect response. This editing may go beyond a
single stage when the removal of an item neces-
sitates the removal of some persons (and vice-
versa). The final outcome is a vector of item
responses (S;) and a vector of raw score
frequencies, (ng).

) Let

i=1,L
N-S

al = reas ! .

r
5) r=1,L-1
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(iii) Calculate the expansion factors

[a+ n/a - 6)?=

[a-«s/a- et’?=<"

(iv) Estimate the item difficulties as

(v) with standard errors of

SE(d;) = [¥ N/s;(N-s 122 -

with values for C; from Table 3.

(vi) The ability estimates for this set of items are

given by

°b= Xb r= 1,L-1



(vii) with standard errors of

SEM) = (wren? = cnt?Ce/L

where f£ = r/L and values of Cg come from Table s,

A Hand Algorithm

In response to complaints that modern test theory is too

complicated and difficult to compete at the practical level

with the traditional approach, we describe an algorithm which
can be done on a hand calculator. While it can be worked to
any desired degree of accuracy, the usual magnitude of the
standard errors involved suggests that one decimal place in
logits is sufficient. We recommend the short-cut expression
for a standard deviation proposed by Mason and Odeh (1968),

G = 2[Sum Top 6th - Sum Bottom 6th]/(N-1)*,

Calculations are expedited by a reference table of the
relation between proportions to increments of 0.1. Greater

accuracy may be achieved by taking smaller increments.
The successive steps in Table 2 have been sequentially

numbered and represent the following operations:
(1) Use proportion correct on a given item to write

down a frequency distribution of the L items.

(2) Multiply the logit corresponding to each proportion
by the frequency for each item and sum the positive
and negative totals separately.

*When an exact sixth of observations cannot be obtained,
proportional parts should be used.
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(3) Find the mean of these initial uncentered estimates.

(4) Subtract this mean from each logit to find the ini-
tial centered item estimates dj.

(5) Using relative score f = T/L for the persons, write

down the frequency distribution of the N persons.
(6) Sum the ability estimates for the top sixth and the

bottom sixth persons and estimate the variance of
initial abilities, Vy, via Mason and Odeh's short-
cut expression, and hence B = V,/2.89.

(7) Sum the item estimates for the top sixth and the
bottom sixth items and estimate the variance of

difficulties, V,, via Mason and Odeh's short-cut
expression, and hence D = V,/2.89.

(8) Use B and D to calculate G = BD and the expansion

factors Y and X.
(9) Multiply each a by Y to obtain d;.
(10) If the final be are desired, multiply each be by X.

To determine an estimate of the standard error of each

item estimate use Table 3 in which an error coefficient for

each combination of proportion correct and standard deviation
is given. The standard error of item difficulty is this

error coefficient divided by the square root of the number

of persons taking the test.
An idea of the accuracy of the PROX method (either by
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computer or hand) is gained if we compare the estimates in
Table 2 with those obtained by the computer algorithm and
those obtained from UCON. Table 4 displays all three sets

of results. Wright and Douglas (1975a) have studied the
degree of imprecision which may be tolerated in item
estimation before measurement becomes noticeably biased. In
view of those results, namely that one decimal place accuracy

in logits is more than enough, we have expressed all three
sets of estimates to two decimal places only. Clearly

there are no practical differences among the three estimates
for any of the items.

Comparison of UCON and PROX for Accuracy--Simulated Data

The simplicity and accuracy of PROX justifies its in-

clusion as a competitor of UCON. Further justification is

forthcoming if we subject the procedure to simulated situa-

tions which place frctusing stress on the underlying

assumptions. In this way we gain information about the

degree of departure from normality which may be tolerated

before we have to abandon PROX.

In view of the fact that both item and ability distri-

butions are assumed normal, our simulation study challenged

both these features. Cases in which the distribution of

person abilities is off-center and skewed and item diffi-

culties are both uniformly and normally distributed were
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investigated. The simulation was carried out in the following

manner

(i)

(ii)

(iii)

First a set of 20 and a set of 40 uniformly dis-

tributed item difficulties was generated with mean
zero and width 4, (e.g., in the case of 40 items,
the generated item difficulties would be -1.95(0.1)1.95),

Then a set of 20 and a set of 40 normally distri-
buted item difficulties was generated with mean zero
and standard deviation 1.

This produced four separate tests to be calibrated.
Parameters for twelve different calibrating samples
were specified to cover a wide range of possibilities.
Emphasis was placed on samples for which the test was
off-center (in this case too easy) because these are
situations which produce the poorest difficulty esti-
mates. Each sample comprised 500 abilities normally
distributed on mean g. and standard deviation o, and
restricted by an upper truncation at 5.0 in order
to induce skew in the ability distribution. The
values of 8. were 0(1)4 and the values of o were
0.5, 1.0 and 2.0.
In any simulation discrepancies between the generating
item parameters and their estimates will occur because

of the stochastic aspect of the probability model.
Long run comparisons between parameters and estimates
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w)

vi)
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are clarified by replication. Instead of admini-
stering each of the four tests to a single example
of each of the twelve samples, we administered
each test to four examples of each sample, each

drawn independently from the same normal population.
Thus four tests by 12 samples by four replications

produced 192 administrations.
Each "administration" of a test to a calibrating

sample was accomplished by simulating stochastic

response patterns according to the Rasch logistic

response model. The outcomes were the data vectors
(5;) of item scores and (n) of person score fre-
quencies which are sufficient for UCON and PROX
calibrations.

An editing routine, described in Wright and Douglas
(1975b), ensured that these vectors conformed to
the algebraic requirements necessary for finite
estimates.

Each pair of data vectors was analyzed by a program
which estimates item parameters by means of both
UCON and PROX.

The results of these simulations were summarized
as follows:

For each replication of one of the four tests to

each of the 12 distributions the UCON and PROX
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estimates of each item parameter were calculated,
and averaged across the four replications to pro-
duce 0; and P, and theirabsolute differencei
a; = 10; - A for each item.

Table 5 illustrates with the statistics from one of

these 48 summaries a set of 20 uniform items administered

four times to the sample distribution with mean 2 and standard

deviation 2. The generating item parameters are also included.

Only the results for items 1-5 and 16-20 are shown since, in

all cases studied, central items (with |§;]<1.00) had 4

values of 0.05 or less.
In other work we have found that when L is greater than

20, random values of A; as high as 0.50 have negligible ef-

fects on measurement. The maximum observed A; over all cases

studied was 4; = 0.25 for the easiest item in the 40 item

uniform test when administered to a very "smart" sample with

mean 3 and standard deviation 1. For this most deviant case

the average skewness and kurtosis of person scores were -1.53

and 5.86 respectively--values well removed from the 0.00 and

3.00 expected from a normal distribution. In our summary of

all 48 administrations we concentrate on A, in excess of 0.20

and 0.10.
In Table 5 we note that with a mildly skewed distribution,

no 4; exceeds 0.15. There is no consistent pattern of
bias in either the UCON or PROX estimates when compared to
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the generating item parameters. The trend in 4, is atypical
among the 48 administrations.

The results of all simulations are summarized in Table
6. We see that 4's in excess of 0.20 occur only 4 times
out of the 1440 item calibrations studied. 4;'s between
0.10 and 0.20 occur only 30 times. Although an approximately
normal distribution of item difficulties is theoretically
ideal for the use of PROX, in most calibration situations
such a requirement can obviously be relaxed considerably as
far as practice is concerned. Pronounced skew and kurtosis
in ability distributions are only occasionally damaging to
the PROX calibration algorithm. As Table 6 shows, with 20
normal items there are no large A values for the distribution

with mean of 3 and standard deviation of 1, despite the
average raw score skewness and kurtosis of -2.00 and 8.50.
Simulation shows no evidence that PROX would be misleading
in any ordinary calibration situation, even when the assumption
of normal distributions is clearly unmet.

Comparison of UCON and PROX for Accuracy--Real Data

Although we do not have any idea of the actual parameter
values in real data, it will be informative to make a compari

son between the UCON and PROX methods in these cases. We

have selected eight calibration problems, seven of which

were carried out independently by students in a course on
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Educational Measurement at the University of Western Australia.
Part of the course requirements was calibration of a test of
the students own choosing. These seven examples vary con-
siderably in the first four moments of their raw score distri-
bution and hence represent a variety of typical situations.

The eighth example was a 40-item test constructed by
Douglas for students registered in an introductory Measurement
and Evaluation course at the same university

Of the seven student examples, four produced UCON and
PROX estimates which were identical for all practical purposes.
One of the remaining three distributions was highly skewed;
in this case, only one item in 30 was "poorly" estimated with
the difference between UCON and PROX being 0.19. The other
two distributions had moderate skew and in each case three
items were "poorly" estimated. The maximum discrepancy ob-
served was 0.35 but this was for an item on which the propor-
tion of persons who had the item correct was 0.98.

Table 7 displays the proportion correct, the UCON and

the PROX estimates ordered according to the magnitude of the
UCON estimate for each item in the teacher-comstructed test.

Raw score statistics are reported for the distribution of
scores. Despite the moderate negative skew and the fact that
these are unedited items, not one item shows an absolute
discrepancy between calibration methods of more than 0.07.

On the evidence of these eight real-data examples it
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would appear that the major contributing factor to inac-
curate estimation is not departure from normality but ex-
treme item scores. Items with extreme scores are poorly
estimated under even the theoretically ideal "conditional
method. These items have the largest standard errors of
estimation. Calibration samples should in general be edited
for both extreme items and extreme persons prior to submis-
sion to an estimation algorithm.

So far we have not mentioned the estimates of the
standard errors in any of these examples. The PROX procedure
is even more accurate for standard errors than for item
difficulties. For example, in the student example mentioned
above where a discrepancy of 0.35 was observed in item
estimates, the discrepancy in standard errors was 0.17.
When we compare this with the magnitude of the UCON estimate
for this standard error of 1.02 a discrepancy of 0.17 seems
negligible. The same conclusion applies in all other
examples, both simulated and real-data.

Conclusions
We have introduced a new item calibration technique

based on normal distribution assumptions in both the item
arrangement and the person population. The technique is
so simple it can be done by hand. The results from exten-
sive simulations and from real examples indicate that one
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may depart considerably from these assumptions before getting
into a situation where PROX would be misleading as a cali-
brating technique. If reasonable editing of data is carried
out before exposing the data to a calibration algorithm, it
is difficult to envisage any calibration problems for which
PROX will mot be as efficient and as useful as the uncondi-

tional method.



Table 1

Logits from Proportions

Proportion .00 -o1 .02 03 0a 05 07 08 .09

0 - -4.60 -3.89 -3.48 -3.18 -2.34 -2.75 -2.44 2.31
da -2.09 -1.99 -1.90 ~-1.82 -1.73 -1.66 ~-1.58 ~-1.52 ~-1.45
<2 -1.32 -1.26 -1.21 -1.15 -1.10 -1.04 99 -.94 -.90
sa -.80 -.75 -.71 -.66 ~-.62 -.58 53-49 - 45
41-40 -.3 -.32 -.28 -.24 -.20 -.16 12 -.08 - .04

logit = in [p/(1-P)]

for proportions above .50 use 1-P and change the logit sign to +.



Table 2

An Example of the Hand Algorithm for PROX

a [e] @ [v] ©)

P Lom Ly & a;=vd;
i 2.20 | 1] 2.20] 1.83] Sum Top 6th=4.03 2.14
2 1.39 | 2| 2.78] 1.02 1.19
.3 8s | 4 3.40 .48 .56
4 a1) s| 2.05] .o0s -05

10.43
.5 c00 | 4] .00|- .37|Sum Bottom 6th=-4.02 | - .43
6 |- .41| 2z|- .82|- .78|5=8.05x2/19 = .85 - 91
7 | -.8s| 1|- .es|-1.22 vy = 2 1.43

8 | -1.39| 1] -1.39|-1.76| D = .72/2.89 = .25| -2.06
9 |-2.20] of .00] - Jit

20 -3.06
G = .28x.25 = .07

Mean 3 Y=(1.28/.93)1/2=1.17
® x-1.25/.93)1/2-1.16

9 © _. @
bp np b =X]

[2.20 2 | Sum Bottom 6th = -10.42 2.55
41.39 5 “1.61

.85 6 - 99
- a 7 - 48

TT .o00 6 Sum Top 6th = 6.32 00

41 6 16.74x2/37 = .90 48
.85 4 Vy = 81 .99

1.39 2 |B = .81/2.89 = .28 1.61
2.20 0 2.55



Table 3

Coefficient for Standard Errors of Calibration or Measurement

Proportion Correct on Item in Sample or
Sp Proportion Correct by Person on Test

Ability in Semple or
meremey mle 3 8 CE 4) 6

0.25 2.0 2.1 2.2 2:5 3.3 or 4

0.50 Z.3 zd 2.3 26 3.4 .2

0.75 2.2 2.2 5 2.6 Fd 5

1.00 2.3 2.3 2.4 2.7 3.6 4

1.25 2.4 2.5 2.6 2.8 3.7 +5

1.50 2.6 2.6 2.7 2.9 3.7 +5

1.75 2.7 2.7 2.8 3.1 3.8 .5

2.00 2.9 Z.9 3.0 2 3.9 .6

The standard errors of calibration (or measurement) equal the

tabled C coefficient divided by the square root of the sample

size, SE(,) = C/N?i i
SE(be) = ci?

or the square root of test length,

* in the values of the estimation algorithm:
Person ability standard deviation = 1.7yp!/2
Item difficulty standard deviation= 1.7xBl/2



Table 4

Item Difficulty Estimates Based on UCON,
Computer PROX and Hand PROX Methods

Estimates

Item Number con Computer PROX Hand PROX

1 2.09 2.20 2.14
2-3 1.22 1.24 1.19
a7 0.60 0.60 0.56
8-12 0.07 0.06 0.05
13-16 -0.42 -0.43 -0.43
17-18 -0.93 -0.94 -0.91
19 -1.50 -1.51 -1.43
20 -2.23 -2.27 -2.06



Table 5

Averages over Four Replications of the PROX and UCON
Estimates of the Uniform Items 1-5 and 16-20

Mministered to 8 © (2,2)

ume U6 =

1 Sle -w7s 2s 1.86 Loa 0.11
2 17 bse un -1.70 .00 ou
3 Er .03 1.57 0.10
4 13 on -.0e EVRY 0.10
B S11 ono .00 —1a6t ite 0.09

16 11 Lis 06 125 1s 0.09
w 13 Ad aoe 1.34 04 0.10
18 1s nat om 145  -.08 0.12
19 17 150 =. re Sa 0.14
20 19 18-01 2.08 2s 0.15

Average Raw Score Skewness = -0.91
Average Raw Score Kurtosis = 2.92
G; is the generating parameter
P. is the average PROX estimate

=] is the average UCON estimate

The trend in A, is atypical.



Table 6

Summary of Simulation Results for Various D Values
with Four Tests and Twelve Distributions

Item Distribution

spe Normal Uniform

Sl<hgs 2 L2<h 8.3 Aas 2 a2<855 03

8B (0,2) 3* =~ 8B" (2,5 2
20 B72 1 - 87 (21 1

8° (3,2 1 - REED 2
8 (0,2) 2
ga 2

BT (2,-5) 1 - 8B (25) 2
6 BT (21 1 - Biscay, 2

B~ (3,1 2 - i
8° (0,2) 1 - 8B" (0,2) 2

B~ (L2) 2

*The number of items with A values of given magnitude.



Table 7

A Comparison of UCON and PROX estimates for
a Teacher-Constructed Test

Item Proportion uco PROX Item Proportion vcon PROX
Number Correct Number Correct

3 96 -2.32 -2.39 H 68 04 .05
22 92 -1.58 -1.61 20 .68 04 05°
7 91 -1.51 -1.54 1 67 07 07

25 90 -1.45 -1.48 37 .66 ar 18
33 89 -1.33 -1.35 3s .63 29 -30
23 .87 -1.12 -1.13 28 61 37 37
8 .85 -0.98 -0.99 26 .59 .46 47

3a .84 -0.85 -0.86 38 .58 .53 54
12 .83 -0.77 -0.78 31 .57 -56 .56
29 82 -0.73 -0.74 6 .57 .58 59
2 .82 -0.73 -0.74 15 .54 70 70

27 .82 -0.73 -0.74 32 .53 78 75
18 .82 -0.73 -0.74 13 52 79 79
40 -80 -0.62 -0.63 30 51 81 .82
a 77 -0.42 -0.42 1 48 95 .96

17 76 -0.36 -0.36 36 a1 1.22 1.23
16 72 -0.15 -0.15 21 35 1.51 1.53
14 71 -0.10 -0.09 10 33 1.62 1.63
B 7 -0.10 -0.09 24 20 2.29 2.32

19 -69 .oL .02 39 13 2.81 2.86

Person Score: Mean = 26.65
Kurtosis 3.01

Standard Deviation = 4.15  Skewness = -0.68



APPENDIX

The program steps in FORTRAN required for obtaining
the PROX estimates of item parameters and standard errors
are shown below.

c N, L, S(I) AND R(J) HAVE BEEN READ

c OBTAIN INITIAL CENTERED ITEM ESTIMATES, STORE IN VECTOR D

CENTER 0.0

D021 =1,L
D(I) = ALOG(N-S(I))/S(I))

2 CENTER = CENTER + D(I)
DO3 I =1,L

3 D(I) = D(I) - (CENTER/L)
C OBTAIN INITIAL ABILITY ESTIMATES, STORE IN VECTOR B

L1=1-1
DO 1J=1,Ll
ARILT « J

1 B(J) = ALOG(ABILT/(L-ABILT))
C FIND MEAN AND VARIANCE OF INITIAL ABILITIES AND THE
C VARIANCE OF INITIAL DIFFICULTIES.

AMEANB = 0.0
VB = 0.0
D0 4 J =1,L1
AMEANB = AMEANB + B(J)*R(J)

4 VB = VB + B(J)*B(J)*R(J)
VB = (VB-AMEANB*AMEANB/N)/(N-1)*2.89
VD = 0.0
DO 6 I=1,L



vD VD + D(1)*D(1)

VD/L1*2.89
CALCULATE EXPANSION FACTORS
vD [

G = VB*VD
AB = SQRT [(1.0 + VB)/(1.0 - G)]
AD = SQRT [(1.0 + VD)/(1.0 - G)]
FIND ITEM DIFFICULTIES AND THEIR ERRORS
DO 7I=1,L
D(1) = AB*D(I)
SD(I) = SQRT(ABAN/ S(I)*(N-S(I))
FIND SCORE ABILITIES AND THEIR ERRORS
DO 8 J =1,L1
B(J) = AD*B(J)

ABILT = J
SB(J) = SQRT (AD*L/ABILT*(L-ABILT))
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