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1_ I NTRODUCT ION 

In adaptive testing each individual is tested with a set of items that 

is selected to match his/her estimated ability ! at the time of testing. In 

its most sophisticated form an adaptive test is interactively administered 

by a computer that scores the test and uses the individual's pattern of 

correct and incorrect responses to select new items from an item bank. In 

this procedure items are selected during the process of administering a 

test (rather than as a part of a predetermined sequence) so that the items 

administered to each individual are appropriate in difficulty for that 

individual. The result is a test that is matched to each individual's ability 

and the test is neither too easy nor too difficult. In this form adaptive 

testing requires application of both computer technology and latent trait 

theory. 

The possibilities of using a latent trait model and computer 

technology to adapt a test for an individual on the basis of item difficulty 

is an area that has been covered extensively in psychometric research 

(for example, Weiss and Betz, 1972; Wood, 1972; Weiss, 1982). Over the 

past 10 to 15 years a variety of studies have demonstrated the 

possibility of achieving the same precision of measurement with fewer 

items (improved efficiency), and of obtaining smaller errors of 

measurement with the same number of items (improved precision) when 

items are selected on the basis of their appropriateness for individuals 

(see, Weiss, 1982; Weiss and Kingsbury, 1984). After a major three year 

1 Adaptive testing can be applied in any situation where the aim is to 
locate an individual on an underlying continuum or variable. However, for 
simplicity the word 'ability' will be used throughout this report. 

1 
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project at the University of Minnesota, Weiss (1980) concluded that: 

In a variety of applications to the problem of achievement testing -- 
including measuring achievement with a large uni-dimensional item 
pool, measuring achievement levels in a number of specific content 
domains, and measuring achievement against a defined mastery 
criterion -- adaptive testing techniques using ICC theory can 
substantially reduce the number of items required in an 
achievement test without reducing the quality of measurements. 
Adaptive testing can improve the quality of achievement 
measurements in terms of both precision and validity while reducing 
the number of items required. (Weiss,1980:8) 

To date however, these studies have been restricted to items based 

on dichotomous (correct/incorrect) scoring, a format that has become 

dominant through the widespread use of objectively scored paper and 

pencil tests. Although it has been mentioned in the literature (for 

example Bejar, 1976; McBride, 1979; Wood, 1973) the use of 

polychotomously scored items in adaptive testing does not appear to have 

been explored in any detail. A number of psychometric models are now 

available (Andrich, 1978; Bock, 1972; Masters, 1982; Samejima, 1969) 

that could be employed for adaptive testing with polychotomously scored 

items. The implementation of an adaptive procedure using one of these 

models is likely to further increase precision and efficiency by extracting 

information from partial knowledge exhibited in students' answers. It will 

also allow adaptive testing to be used with a greater range of item types; 

including likert style attitude items, item clusters, interactive items and 

items that use scoring that includes credit for partial understanding or 

partial completion. 

In this report we aim to begin work on extending adaptive testing to 

include the Rating Scale Model (RSM) (Andrich, 1978) and Partial Credit 

Model (PCM) (Masters, 1982), two Rasch models that allow items to be 
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scored in ordered categories. These models share statistical characteristics 

that enable the separation of person and item parameters and 

consequently they have sufficient statistics that are based on simple 

counts of objectively defined events (Masters and Wright, 1984). 

Parameter estimation with these models is relatively simple and could 

feasibly be applied in an interactive testing session with a micro-

computer. 

ELEMENTS OF ADAPTIVE TESTING 

Item Banking  

There are four key elements in any adaptive testing procedure. The 

first is a bank of test items with known characteristics, from which 

individually designed tests can be constructed. A latent trait model must 

be used to develop and maintain this bank of test items. Masters (1984) 

and Masters and Evans (1986) have shown how the partial credit model 

can be used to bank various types of polychotomously scored items. The 

rating scale model, which is perhaps best suited to attitude measurement, 

has not yet been used for item bank development but as a special case of 

the partial credit model it would seem almost obvious that item banking 

is possible with this model. 

Test Scoring  

Secondly, tests that differ from individual to individual must yield a 

score on a common scale. After calibrating an item bank the item 

parameters are treated as known and for each individual who takes the 

test an ability estimate can be calculated based on his/her responses to 

any subset of the items in the bank. This ability estimate can be used as a 

score because it reflects the location of the individual on the underlying 

continuum and is directly comparable to any other ability estimates based 
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on tests built from the same item bank. 

In adaptive testing, ability estimation (scoring) is usually 

undertaken with maximum likelihood or Bayesian approaches (Owen, 

1969, 1975). In Bayesian estimation a prior ability distribution for each 

individual is hypothesized. After the administration of an item with 

known characteristics, the individual's response is used to modify that 

distribution to determine a posterior distribution. The mean of the 

posterior distribution becomes the updated ability estimate (score) and 

the standard deviation is the standard error of that estimate. In the 

Bayesian procedure the individual's ability is estimated sequentially, 

beginning with a prior estimate and updating that estimate item by item. 

The test score is the final updated ability estimate after the last item has 

been administered. Because of its sequential nature this method is order 

dependent (i.e., two individuals can be administered the same items and 

make the same responses but if the item order is different then their test 

scores may differ). 

An alternative to Bayesian estimation is maximum likelihood 

estimation. In adaptive testing, where the item parameters are assumed 

to be known, it is relatively easy to use a Newton-Raphson maximum 

likelihood procedure to estimate the individual's ability on the basis of 

their previous responses. Maximum likelihood procedures make no 

assumptions regarding the individual's prior ability or the distribution of 

the attribute. 

A number of studies have been undertaken to examine the relative 

merits of Bayesian and maximum likelihood based adaptive testing (e.g., 

McBride, 1976; Rosso & Reckase, 1981; Weiss, 1980; Weiss & McBride, 

1983). The results of these studies have been mixed, but in general it 

would appear that maximum likelihood estimation is more accurate under 

a variety of conditions. While the Bayesian estimation can usefully employ 



prior knowledge of the individual's ability in the prior density function, 

there is a problem when the prior knowledge is not available or is 

inaccurate. 

This result points out the importance of the prior to the Bayesian 
procedure_ An innacurate prior can effect the ability estimates. Since 
knowledge of the prior is often not available this procedure could 
result in biased estimates of ability. It thus seems that the maximum 
likelihood procedure is the procedure of choice if an adequate prior 
is not available. (Rosso and Reckase,1981: 10) 

This result was supported by Weiss and McBride (1983) who found 

that Owen's Bayesian adaptive testing method did not provide 

measurements that were unbiased and equally precise at different levels 

of the ability continuum, except under the unrealistic condition of an 

extremely accurate prior. In this study we will assume no prior 

knowledge of individuals' ability and we will use maximum likelihood 

estimation. 

Item Selection  

A third key element in adaptive testing is the method used to select 

items from the bank for administration -- the item selection algorithm. 

The most common item selection algorithm applied with maximum 

likelihood estimation relies on the use of item information functions 

(Birnbaum, 1968) which indicate the amount of information that an item 

can convey about a particular ability level. Along with test information, 

which is the sum of the item information functions for the items in the 

test, item information has proved an important part of test development 

with latent trait models and with adaptive testing in particular. 

Item selection is usually performed in the following way: Based on 

an individuals' responses to previous items, a maximum likelihood ability 

5 
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estimate is made. Given this ability estimate, the item information 

provided by each remaining item is calculated. The item providing the 

most information is then selected for administration. Selecting the item 

that provides the most information at an estimated ability is equivalent to 

trying to minimize the standard error of the post item, ability estimate. 

The information function is well understood for the commonly used 

two and three parameter logistic (see, Birnbaum, 1968; Lord, 1980) and 

the dichotomous Rasch model. In the Rasch model the simplicity of the 

item information function has meant that its use has been largely implicit. 

For more complex latent trait models, that allow scoring in a number of 

ordered categories, the information functions are not well understood. 

Such an examination is necessary if adaptive testing algorithms are to be 

developed for these models. In chapter 2 RSM and the PCM are introduced 

and their information functions are discussed along with implications for 

adaptive testing. 

Test Termination  

The final element of adaptive testing is the rule used to determine 

when testing should be stopped — the test termination criteria. 

Computerized adaptive testing is generally terminated at a fixed test 

length, which is likely to be somewhat shorter than for a conventional 

test, or after measurement error has decreased to some prespecified level 

which ensures equi-precise measurement over the ability range of 

interest. i.e., individuals of differing levels of ability have their ability 

estimated with equal accuracy. The consequences of a variety of 

stopping criteria are examined in Chapter 3 where a set of simulations 

using the RSM and the PCM are reported. 



FOCUS OF THIS STUDY 

In this report we focus on two major issues. The first is the nature of 

the information functions for the RSM and the PCM and the likely 

implications for adaptive testing. In chapter 2 we show that the 

information functions for these models behave in a manner that makes 

the implications for item bank construction and adaptive testing less than 

obvious. 

In chapter 3 we report on some simulations with RSM and PCM item 

banks each with items scored in three response categories. These 

simulations provide some basic data on adaptive testing with these 

models. 

7 



2_ THE MEASUREMENT MODELS 

AND THEIR INFORMATION FUNCTIONS 

The models used in this study are members of the Rasch family of 

measurement models. As such they share "...a fundamental statistical 

characteristic — separable person and item parameters and hence 

sufficient statistics." (Masters and Wright, 1984: 529). The fundamental 

building block of all of these models is Rasch's simple logistic model 

(Rasch, 1960) which can be used when items are scored dichotomously. 

Under this model the probability of an individual with ability p scoring xi 

on item i with the single item parameter 8 iI  is given by: 

exp x i (p - 	) 

 

x i  = 0,1 	 (21 ) 

 

I + exp (p - 8ii ) 

The partial credit model (Masters, 1982) is an extension of the simple 

logisitic model that can be used with response formats that employ more 

than two ordered performance or response categories. Wright and Masters 

(1982) and Masters and Wright (1984) describe how the partial credit 

model can be built from the multiple application of the simple logistic 

model. 

If item i has m i+1 ordered response categories then the probability of 

an individual with ability I responding in category x i  to item i is given by: 
x i  

exp 	(p s ii ) 
j-0 

8 

 

(2.2) 

 

k 

Z exp Z - 
k-0 



9 
where item i is described by parameters S ii „sim  and 

o 
exp E ((i - 6 ii )=-1 

1-0 

The rating scale model (Andrich, 1978) is a special case of the partial 

credit model that places constraints on the possible values of the item 

parameters 811, so that they can be reparameterized as 811-(Si+Ti). In this 

case the number of categories is equal for all items and we can write 

mi=m for all i. When this model is applied to the analysis of a rating scale, 

a location parameter, Si, is estimated for each item i, and m response 

'thresholds' t i , t2 ,...,tm , are estimated for the ms1 response alternatives. 

Model (2.2) can then be expressed as: 
x ii  

exp E (13 - (801.1)) 
i-o 

Px1 (0) = 

  

x i=0,1,...,m 	(2 .3) 

  

	

in 	k 
Z exp Z (p - (81 +To) 

	

k-0 	i-0 
0 	 m 

where exp Z (p - (80 10)=-1 and Di  = 0 
1-0 	 i-I 

 

INFORMATION FUNCTIONS 
In adaptive testing one of the most important and useful latent trait 

concepts is test and item information. Given a set of test items and a 

vector V=(xi,x2,....,k), of responses to those items, Birnbaum (1968: 453) 

defined the test information  of any given scoring formula, x=x(V), based 

on any given scoring model as: 

1 	laE(x10)1 2  
(2.4) 

var(x113) 	aP 

This definition of information was chosen by Birnbaum because it 

1(15,x) - 



10 

expressed the precision of interval estimation based on the given test and 

scoring formula. Lord (1980) noted that the numerator of this function is 

the squared slope of the regression of the test score on 13, and the 

denominator is the conditional variance of the test score. Therefore, 

information increases as the slope of the expected score increases (i.e., as 

the score becomes more sensitive to changes in p), and as the variance in 

the score becomes smaller. Information when defined in this way has 

proven to be a useful measure of the accuracy of a test at various levels of 

13 - 
For the partial credit model defined in (2.2) the expected test scare 

(regression of the test score on p) is given by: 

L m i  
= E E kiPk,((3) 

i-1 14-0 

and therefore, 

a 	L a 	m 1  
— E(1113) = 	— E k i Pki (p) 
ap 	i-I 013 k1-O 

L f mi 	 f mi 	^
LL 
 2

f =I >ki2Pk 1 (p) — 	ktPk i (P) 
t-t L 	 k1-1 	J 	J 

then by local independence, 

a 
E(x1p) 	var(x113) 
	

(2.5) 
ap 

Substituting (2.5) into (2.4) gives I(13,x) = var(x113), which corresponds 

to the reciprocal of the asymptotic variance for the unconditional 

maximum likelihood estimator of 13 (Wright and Masters, 1982: 82). This is 
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1982: 82). This is the usual concept of information developed by Fisher. In 

general l(p,x) will be simply written as 1(0) with x=x(V) implied. 

Since the test information consists of additive components summed 

over the number of items it is possible to define item information  as: 

m i 	ra j  
i i (p) = E k,2Pki (p) (E k iPop) ) 2  

k-1 	k-1 
so that: 

I 
1(13) = 	Ii(p) 

(2.6) 

The work of Birnbaum was based on items that could be scored 0 or 

1, (Birnbaum, 1968: 397). When Samejima (1969) developed the graded 

response model she extended the definition of information to cover items 

scored in a number of graded categories. 

Samejima defined the item response information function  as: 

a 2 

ixi (p) = - — tog Pxj (p) 
ap2 

this definition can be expressed as: 

a 	P.xi (P) 

laxi (p) 

P"x 1 (0)Px0) - 	P'x i (13)1 2  

[Px ; (0)] 2  

r  Rxi (13) 	1
1

2 

Pxj (P) 

P"x i (P) 
(2.7) 

Px i (p) 



She then defined the item information function as the expected value of 

the item response information. 

la) = E Ni( i3)1 

that is: 
mi 

I i(3) = E lx,(R) Pxi(0) 
k-0 

and substituting from (2.7) gives: 

mi 	P'x i ( p)2 
	

mi  

li(13 ) = 
	 E P'x (in 

k-0 Pxi(P) 	k-0 

To make some of the algebra easier the function: 
= 11 11 (13) = exp(ip - Sil - 	Sit ) with T o  = 1, can be defined. 

a 
Note then that 	 = iiTTO) 

ap 

and that the PCM as defined in (2.2) can be expressed as: 

then 

	

m i 	 m- 
xii, x i (p)Etiik(13) - i'x i (13)Erifk(13) 

a 	 k-0 	 k-0 

Px i ( 0) 
ap 	 w. 12 

w k (p) 
k-0 

12 
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f 	mi 	1 
- Pxi (p) 	1 x i  - y kpk (p) 

L 	k-U 	J 

f 	1 
= 	Px i (P) 	x; - E(x113) 

L. 	J 
and 

	

a2 	a 	r 	mi 	1 

Pxp) - — Px j (13) 	i x i  - E kPia) 

	

ape 	ap 	L 	k-U 	J 

r 	m - i 	1 	fa- ] 

	

.. 	p.xi (0) 	I x i  - ZkPk (I3) 	1- Pxj (I3)Ek Fk(13) 

1- 	k-O 	J 	k-U 

r 	mi 	1 2 	mi r I 	mi 	1 	1 

- Pxj{P) 	ki — EkPk(P) 	I — Px i (P) 	ic I k - EkPk(P) 1 Pk((3 ) 
I- 	k-U 	J 	k.0 L L 	k.0 	J 	J 

f 	mi 	12 
• P. 1 (13) 	1 xi — EkP03) 	I 

1 	k-U 	J 

r mi 	r mi 	1 2  

	

- Px j (13) 	1 	k 2Pk(13) - ' EkPk(P) 
L -0 	I- k-U 	J 

I 
J 

ati 
so EP-43) - a 

xi-0 

then 

m i  R:rx ,(p)12 
l i (p) 	= 	E 	 

x i-0 Px i (P) 
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tui 	t Px j (13) i Xi - E(Iii(3) I 	) 2  

2 
xi-0 

E 1 x i  - wi i ip) 1 2  P.(3) 
- x-0l 

- 	var(x i  1 I1) 

If I(f3), the test information is defined as the sum of the item informations 

then 

L 

1 (13) = Z Ii(P) 

L 
= ci: vat( x i  1p) 

i-i 

= var(x 1)3) ( by local independence) 

So both the Samejima and Birnbaum formulations coincide, and 

correspond to the reciprocal of the asymptotic variance of iji, the 

maximum likelihood estimator of II. 

ITEM INFORMATION AND THE SIMPLE LOGISTIC MODEL 

In examining the nature of the information function for these models 

it is convenient to begin with the simple logistic model (2.1). In this case: 

Ii(p) = 	Px i (P) - Pxj (f1) 2  

Px ,(13)(1 - Pxi (13)) 

Since 0 i Pxi  i LO, Ii(13) attains a maximum of 0.25 at 13--Sit and alt 
information curves have the same shape. Figure 2.1 shows the 
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0.250 

0. 125 

-5 	-4 	-3 	- ,7, 	 0 

ability - difficulty 

Figure 2.1 Information curve for a two category item  

information curve as a function of 13 for 8 11 -O. For items with different 8 11 

 the curves will differ only in their location on the variable and that 

location can be unambiguously interpreted as the item difficulty. 

Consequently, when all items in an item bank are scored dichotomously 

the item with the difficulty paramter that most closely matches the 

current ability estimate maximizes the available information. 

THREE RESPONSE CATEGORIES 

For the PCM with mr2, (2.2) can be expressed as follows for x 1 =0, 1 

or 2 respectively: 

00) 
Po 

 

(2.8) 

 

Yoo)+T ,(3)+4/ 203) 
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T i (13) 

p 1  a 	 (2.9) 

1/ 0 (3)+11 1 0)+Iif  2(13)  

41 2( 3) 
R2 

  

(2.10) 

  

 

T 0 (13 )-011  1 (13 )-0 ' 2(3 ) 

  

and substituting (2.8), (2.9) and (2.10) into (2.6): 

 

1  + 4 ,11 2  [ 	I 2T2 I  2 

tt11 0 41j 1 +T 2 j  

( 2 . 1 1 ) 

13+1' 1 +1' 2 

If we consider an item i, with fixed parameters then the value of 1 
for which the information attains a maximum may be determined by 

differentiating (2.11) with respect to I. 
a 	 ty - try + '1' ,21,2 	1 4, 2 2 + 84'2 _ 84. 2 2 

ap 
	

(T 0 +41 1 +11 2 ) 3  

For 13.(5 i1 +812 )/2, 	2 = 1 therefore, 

a 
1i(13) 	= 

ap 

- T i 2  + 	- %P i  + 8 	8 
=0 

(I/ 0 "I/ 1 +41 2 ) 3  

Consequently1348 ii +S i2 )/2 	is a turning point. If 13=8 i ,,, is substituted 

into (2.11) we find that: 

ii(8i.) = 
[ T 1 +2 1 =2 	 2 

T i +2 	2 + exp((8 12 -6 11 )12) 

(2.12) 



4 -7 	-4 

8 i1 = -2.00 

8i2 = 0.60 

813 = 0.60 

= -1.00 

= 0.00 

= 1.00 

-4 	 -2 	- 1 
	

1 	2 	 4 

811 = - 2.00 

= -2.00 

= 2.00 

814 = 2.00 

ti 

-5 	-4 	-2 	-` 1 	 3 	4 	5 

Figure 2.2 Some possible item information curves 

17 



I8 

So while 0=150, will always be a turning point it may be a global or 

local, minimum or maximum. That is, depending on the values of Sit and 

6i2 the shape of the information curve for a given item, i, depends on the 

difference between the item parameters 5i1 and 5i2 for that item. Three 

possibilities are: 

• If Sii4i2 then I; = 2/3 and p=ai . is the global maximum 

• as (45i2-1511) 	00. li ---0 0 and 13=5i ■  is a minimum 
■ and as ( 6i2 -6i1) -, -.., li -) I and OA. is the global maximum 

In summary, if 812 is much larger than So then the information 

function has a local minimum at 13=Si o  and is bimodal with peaks at 8i1 

and Si2. If Sii is greater than Sit  then the information function has a 

maximum at p=5 ; .. As 5i2-80 tends to negative infinity the function 

becomes more peaked. Unlike the dichotomous case of the model the 

information functions for items with different parameters no longer 

always have identical shapes since the shape of the curve is a function of 

Sit -Sit. For  Sit-fill  less than about 3.2 logics Ii is a maximum and for 5i2-Sit 

greater than 3.2 li is a local miminum. 

THE GENERAL CASE (ifid>2) 

For the general case of mi+ I ordered categories in item i the algebra 

involved in an analytical examination of the information functions 

becomes messy and resorting to empirical examples is more useful. Figure 

2.2 contains plots of the information curves for three items with 

parameters given by; 

(i) 8i1 =-1 8i2=0 	8i3-1  

(ii) Sit=-2  5, 2=0.6 5, 3 =0.8 

(iii) S it =-2 5i2.-2 5 i3=2 ai4 =2 

For item (i) the information curve is symmetrical with a peak at f3=0. 
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For item (ii) the curve is skewed slightly to the right and peaks at about 

13 =0.5. For item (iii) the curve is bimodal with peaks at about 0=-2 and 

13=2. Dodd and Koch (1985) noted that while the shape of the information 

curves can be quite different, the area under the curves (total 

information) is identical whenever the items have the same number of 

item parameters. Although not shown in their paper this can be easily 

demonstrated since: 

cc  
li(13) d13 = [ 	I p) 

It is interesting to note that this is an essential feature of Rasch 

measurement models. Although it is often stated that if items are to 

conform to the Rasch model they must have equal item discriminations, 

the varying shapes of the information curves shown above indicate that 

this will not generally be the case if item discrimination is defined as the 

slope of the expected item score (regression of item score on ability). To 

conform to the Rasch model all items with the same number of categories 

must contribute the same amount of total information and the slopes of 

the conditional probability curves, P H/ (Px-t+Px), must be the same. This of 

course implies that the simple logistic model requires equal item 

discrimination since each item contains only one decision point. 

The preceeding discussion shows that it is misleading to talk of a 

single value of item discrimination, unless a linear item characteristic 

curve is proposed, as in the classical test model. For most latent trait 

models the discriminating power of an item at a given ability level is a 

function of all item parameters. Examining the information curve is the 

natural way to determine these variations in discrimination power. 
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-5 	-4 
	 4 	5 

logi is 

Figure 2.3 Lem h r C 	t c 	o 	t e 
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MAXIMIZING INFORMATION 

The amount of information that an item provides at different levels 

of ability is a function of the item's sensitivity to differences in ability 

(discriminating power). This is illustrated by Figures 2.3, 2.4. and 2.5 

These figures show the item characteristic curves, the expected score 

curves and the item information curves for two three category items with 

6i2 -5i1=2 and 5i2-611=-2 respectively. These figures illustrate how the 

height of the information curve is related to the slope of the expected 

score curve, which is the regression of the item score on 3. Where the 

gradient of the expected score is steep a small change in ability results in 

a large change in the expected score of the student. When the expected 

score curve is less step the item is less sensitive to changes in ability_ 

The information curve (see Figure 2.5) for the item with 6i2-8i 1 =-2 is 

considerably more peaked than the information curve for the item with 

5i2 -8i1=2. If the corresponding item characteristic curves are examined it 

can be seen that the item with 6i2 -6ii —2 is more sensitive than the item 

with di2-6i1 =2 to variations in p in the neighbourhood 13-0. Figure 2.3 

shows that most students with ability anywhere between I=-0.5 and 

13=0.5 are likely to score one for the item with Si2-8i 1 —2, while for the 

item with Si2-6i1-2 students with 13 near 0.5 are likely to score 0 and 

students with 13 near 0.5 are likely to score 2. 

While the item with 8i2 -6i 1 —2 is more sensitive in the neighbourhood 

of 0=0 the item with 6i2-80 =2 is more sensitive in the neighbourhoods of 

0=-1.0 and 13=1_0. Again this can be seen by examining the item 

characteristic curves which indicate the sensitivity of the items to 

variations in 13. For example, for p in the neighbourhood of -1.0 a 



8 it = 2  

Expected Score 

22 

2.00 

1.75 

8  = —2  
1.50 

1.25 / 

1.00 

r 	e 
0_75 

0.50 

0.25 

-4 	 -2 	-1 	0 	1 	 3 	4 

Log i ts 
Figure 2.4 Expected score curves for two three category items  

student will almost certainly score zero on the item with Si2-5i1=2 but for 

the item with 8i2-8i —2 a student is most likely to score zero if 13<- 1.0 and 

one if p)1_0. Note that these two items provide the same total information 

and although the curves are different in shape they both have the same 

total area. This is reflected in Figure 2.4 as the item with 8i2 -8ii= -2 is 

more discriminating between p=-1 and p=t and the other item is more 

discriminating elsewhere. 

IMPLICATIONS FOR ADAPTIVE TESTING 

When selecting items for administration in an adaptive test based on 

the dichotomous Rasch model (m i = 1) Figure 2.1 indicates that the item 

bank need only be searched for the item whose difficulty parameter most 

closely matches P
. 
the student's current ability estimate_ In this case the 

selected item will be the item upon which the student has an expected 
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Figure 2.5 Information Curves for two three Category Items  
score closest to 0.5. It would appear that there are three possible rules for 

item selection in adaptive testing when maximum likelihood estimation is 

used with the BM and KM: 

(1) Select the item that most closely satisfies E(xj113)-mi/2 
(2) Select the item that most closely satisfies 13=8i. 
(3) Select the item for which 11(13) is a maximum 

Previous examples and discussions indicate that these rules do not 

coincide in the general case of mi+ 1 ordered categories. For the case ini=1 

all three conditions will be satisfied concurrently. For m'=2 conditions (1) 

and (2) are satisfied at 13=Si. but (3) may not be satisfied. In fact for very 

large values of S12-8ii the information function may be a local minimum 

at For the case m1>2 it is possible that none of the above conditions 

may be satisfied by the same item. 

In the future it is expected that a study should be undertaken to 

determine which of these criteria (or perhaps some other) should be 

employed for item selection in an educational environment. On the basis 
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of measurement precision criteria (3) would be the one of choice. However 

an examination of Figure 2.3 shows that items of high information may 

not be the most acceptable on educational grounds. For this item the score 

category one is not being used since the probability of scoring one is 

almost zero for all students. This means that students tend to get the item 

right or wrong and it may not be suited to partial credit scoring. Using 

three categories may have artificially inflated the discrimination power of 

the item at p=si .. 

DISCUSSION  

When constructing an item the test developer makes a decision about 

the number of possible useful outcomes that the item can identify. In so 

doing the constructor decides upon the amount of information that the 

item can provide about the ability being measured. How these outcomes 

are defined then effects the location of the item parameters, 50 , and this 

determines the distribution of the available information over the variable 

of interest. This is in contrast to other popular latent trait models such as 

the two and three paramater logistic models, the graded response or 

nominal response models which allow the amount of information provided 

by an item to be determined empirically. 

There does not appear to be any obvious rules to apply in 

determining an acceptable distribution of information for an item. If a 

developer defines three outcomes but one outcome is never very likely 

then the information function will be peaked and the item will be 

functioning as a dichotomy. The acceptability of this can only be 

determined by the developer in terms of whether the item is functioning 

as intended. It is possible that the substantive importance of an outcome 

will mean that it should be retained even when only few outcomes of the 

type occur. 
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In most instances it is expected that items regarded as acceptable by 

developers will provide maximum information at Si.. Consequently, in the 

following simulation we consider only items with an information 

maximum at Si.. 



3_ SIMULATIONS 

In this chapter four sets of simulations are undertaken as a 

preliminary examination of adaptive testing with the rating scale and 

partial credit models. These simulations were undertaken to determine 

the recovery power of adaptive tests using various item bank sizes and 

test termination criteria. 

The four sets of simulations were all undertaken with items scored 

in three categories only (i.e., m1=2 for all i). In the first and second sets, 

6i2-8i I was fixed at 1.0 for all items. This restricts the partial credit model 

to the rating scale model (Andrich, 1978). In the first set fixed length 

stopping rules were used and in the second, fixed precision stopping was 

used. In the third and fourth sets the biz-6ii  were allowed to vary with 

the restriction 0<6i2 -6ii<1.5 placed on the items. The third set used fixed 

length stopping rules and the fourth, fixed precision. 

In each of these sets of simulations the restrictions on the item 

difficulties ensures that the item information functions are maximized at 

Si.= (8i2 -8ii)/2 and at this point the expected score of a person with 

ability (3=8i. is mi/2 (in this case, mi/2=1.0). Consequently the problem of 

comparing item selection criteria as discussed in the previous chapter is 

avoided. The design for the four sets of simulations is shown in Table 3.1. 

Table 3.1 Design of the simulations   

Simulations 8 12-811 =1 0<S 12 -Sit <1.5 Fixed length Fixed Prec 

One • • 

Two • • 

Three • • 

Four • • 
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For each of the simulations five item bank sizes were used; 50, 75, 100, 

150 and 200 items and for each bank the average difficulties Si. were 

rectangularly distributed from -3 to 3 logits. For the first two sets of 

simulations Si i =60-0.5 and 6i2=5;.+0.5 were then calculated while for the 

third and fourth sets a difference (4=6;2-5;1 was generated using a 

uniformly distributed psuedo-random number generator and 81 1 =6 ; .-di/2 

and (512=151„+d1/2 were then calculated. The student ability parameters P n  

were rectangulary distributed between -3.5 and +3.5 logits and the 

population was fixed at 1000 students. Each student's response to an item 

was simulated by calculating the model probability of each possible 

response given the fixed item paramaters and the generating value of I 

and then comparing this modelled probability to a uniformly distributed 

psuedo-random number to determine the response. In the estimation 

procedure the item difficulty parameters were not calibrated but treated 

as fixed and used to estimate the abilities. 

For the fixed length analysis students were administered tests of 

length 5, 10, 15, 20, 25 and 30 items for each of the five item banks. That 

is, every student was given 30 items and ability estimates were recorded 

after 5, 10, 15, 20, 25 and 30 items. For the fixed precision analyses, four 

stopping rules were used (i) se(P a )<0.6 or length>10, (ii) se(13 a )<0.5 or 

length>15, (iii) se(Pn)<0.4 or length>20 and (iv) se(li n )<0.3 or length>30. 

Every student was given a maximum of 30 items and ability estimates 

and standard errors were recorded after each of the four criteria were 

first satisfied. Abilities were estimated using a Newton-Raphson 

maximum likelihood procedure and items were selected from the bank so 

that they maximized the information function. In this case, maximum 

information is provided by the item with the mean difficulty, S o, closest to 

the current ability estimate. 

In each case testing commenced with the administration of the item 
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of median difficulty. After an ability estimate was made the bank was 

searched and the unused item that provided the most information was 

selected for administration. Since the maximum likelihood procedure 

cannot provide an ability estimate for a student with a zero or perfect 

score, a fixed increment of 0.7 was used until a maximum likelihood 

estimate could be made (i.e., if a student had a zero score then 0.7 logits 

were subtracted from that student's current ability estimate; if a student 

had a perfect score then 0.7 logits were added to the ability estimate). As 

soon as a student's total test score was no longer perfect or zero a 

maximum likelihood estimate could be made. Using an increment of 0.7 

ensured that if a student scored zero on all items it would take five items 

to reach the lower extreme of the item bank. At that stage testing was 

terminated. Similarly if a student achieved a perfect score on each item it 

would take five items to reach the upper limit of the bank (see Patience 

and Reckase, 1980). If an estimate could not be made after the 

administration of five items, testing was terminated and no ability 

estimate was provided for that student at any test length. 

METHODS OF ANALYSIS 

The methods of analysis that were employed focus on precision and 

recovery. Precision is viewed as the accuracy, in terms of standard error, 

that can be achieved for individuals over the whole ability range. 

Recovery is viewed as the accuracy with which the adaptive procedure is 

able to recover the generating values used in the simulations. 

Precision  

(i) Informatkn: The test information (in this case the reciprocal of 

the square of the asymptotic standard error) provides an index of test 
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precision at all levels of ability. By examining the information curves, the 

effect of the bank size and test length on the suitability range of the test 

is determined in terms of measurement precision. For the first two sets of 

simulations 6 '2 -4%1=1 is fixed so the formula (3.12) allows the calculation 

of the maximum possible amount of information that can be provided by 

items of this type if an item with Si. 7 R is always available. 

Item information is defined at the ability estimate, lin , for student n 

by (2.6) as: 
m-  , 	 m-  , 

= E k 2P00.) - (E kPxo n )) 2  
k-1 	 k- I 

and test information as: 

i- 1 

As discussed in the previous chapter the standard error of an ability 

estimate, 0, corresponds to the square root of the reciprocal of the test 

information. That is: 

se(p ) = 11,IT(p ) 

Recovery  

(ii) Bias•The possibility of any consistent under or over estimation in 

the abilities was studied by calculating the average bias. The total 

population of 1000 was broken into succesive subgroups of 100 according 

to their generating ability and then for each group the average difference 

between the generating and recovered abilities was calculated. 

The average bias for each group of 100 students is given by: 
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(iii) Efficiency -The efficiency of the procedure in recovering abilities 

was examined by comparing the root mean square: 

[ D1311 _011) 2 	 1/2 

RMS = 
100 

with the average standard error: 

se(p n )2 	1/2 
ASE = 	

[ 	100 	i 

Studying efficiency in this way indicates whether the observed 

variance in ability estimates is the same as the modelled variance. This 

approach also gives a check for the asymptotic standard errors produced 

by the maximum likelihood estimation procedure. Since, if no bias is 

evident, the RMS is an empirically based estimate of the standard error 

for data that is generated to fit the model. This is of particular interest for 

the shorter tests were the asymptotic result is less likely to hold. 

(iv) Correlations between Generating and Estimated Abilities: 

Estimated abilities were correlated with the generating values of the 

abilities, and the correlation coefficients analysed. This method is widely 

used in the examination of the recovery power of simulations. These 

correlations are often called fidelity or validity correlations (eg., Weiss, 

1982) 
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Table 3.2 Theoretical Limits on Information and Standard Error  

Test Length Max Information Min Standard Error 

5 2.74 0.60 
10 5.48 0.43 
15 8.22 0.35 
20 10.96 0.30 
25 13.70 0.27 
30 16.44 0.25 

PRECISION 

Information 

Simulation Set One: Recall that simulation set one used banks of 

items with 6 i2 -5;1=1 and fixed test length stopping criteria. Since Si2-8;1=1 

for all items, applying formula (2.12) it is possible to calculate the 

theoretical limits on the test information. This is the amount of 

information that could be provided if an unlimited supply of items were 

available ensuring that 13=5i. was satisified for all items selected for 

administration. Table 3.2 shows the upper limits for information and the 

corresponding lower limits of the standard error for tests of lengths: 5, 10, 

15, 20, 25, and 30 items, where Si2-5i1=1. 

Figure 3.1 shows plots of the test information curves for each of the 

six test lengths when using the 50 item bank. The six horizontal bars 

drawn in Figure 3.1 (and Figures 3.2, 3.3 and 3.4) indicate the maximum 

information that can be provided by these tests as shown in Table 3.2. 

The general shape of the curves indicates floor and ceiling effects in the 

item bank. At the upper and lower extremes of the ability range there are 

fewer appropriate items and this leads to a decrease in precision. At this 

bank size, it is apparent that little is gained beyond 20 items in terms of 
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test information and consequently measurement precision. At the centre 

of the ability distribution the increase from 20 to 30 items increases 

information from about 8.5 to 12.5, which is equivalent to a decrease in 

the standard error from 0.34 to 0.28. At the extremes of the ability 

distribution, where the available supply of suitable items is smaller, each 

additional item beyond about 15 items did not provide any substantial 

increase in precision. 

Beyond about 15-20 items students of high ability will be 

administered items that they find very easy because the items of 

appropriate difficulty have been exhausted. Similarly at the low ability 

end only items that have too high a difficulty will be available for 

ad ministration. 

test information 
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Figure 3.2 shows the corresponding results for the 200 item bank. In 

this case the increase in test length beyond 20 items continued to 

contribute to the total information because of the availability of more 

appropriate (informative) items. This is indicated by the information 

curves reaching the horizontal maximum information lines for each test 

length. Note however, that the increase in information from 20 to 30 

items only corresponds to a decrease in the standard error from about 

0.30 to 0.25 at the middle of the ability distribution, and from about 0.33 

to 0.28 at the extremes. 

Figure 3.3 shows the test information curves again, this time for the 

15-item tests using three different item bank sizes and Figure 3.4 shows 

the corresponding curves for the 30-item tests. In Figure 3.3 we see 

almost no improvement in measurement precision by extending the item 

bank beyond 50 items. However, Figure 3.4 shows a larger item bank can 

improve accuracy if longer tests are required, but the gains are not 

substantial. The largest gains are at the extremes of the ability 
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distribution. These results clearly fit with the floor and ceiling effects 

described above. For the 15-item tests a bank of 50 items is sufficient to 

ensure the administration of appropriate items, so little improvement in 

precision is gained by an increase in bank size. For the 30 item test the 

larger item bank increases precision, particulary at the extremes because 

the number of appropriate items is limited when trying to select 30 items 

from the smaller item bank. 

All bank sizes show floor and ceiling effects that result in a drop in 

precision at the extremes of the ability distribution. This is most marked 

for large tests drawn from smaller item banks. As a result, larger item 

banks may be necessary for longer tests. However, the amount of 

improvement gained by administering more than 15-20 items is small 

even when using banks of 200 items. 

Siamlatith, Set Two: In simulation Set Two the items are the same as 

those in set one, but rather than administering fixed length tests, stopping 

criteria that specify a fixed level of precision have been used. Table 3.3 

shows the theoretical minimum number of items (using (2.12)) required 

to reach each of the prespecified levels of precision used as stopping rules. 

In Figures 3.5 and 3.6 the horizontal lines indicate the minimum required 

test lengths that are shown in Table 3.3. 

Table 3.3 Theoretical Minimum Test Lengths required to achieve specified  

levels of precision 

Specified 
	

Information 
	 Minimum 

Standard Error 
	 Test Length 

0.6 2.78 5.07 
0.5 4.00 7.30 
0.4 6.25 11.41 
0.3 11.11 20.28 
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Figure 3.5 shows the average test lengths for the four fixed precision 

stopping rules when drawn from a 50 item bank. For all levels of 

precision a slightly greater number of items has been required to 

establish the same precision at the extremes of the ability distribution_ 

For the se(13 n)<0.6 and sefp n)<0.5 criteria the precision requirements were 

met before the test length limits had been exceeded. For the third level of 

precision (se(13 n)<0.4) however floor and ceiling effects began to emerge at 

the extremes as the precision requirements could not always be met 

before the maximum test length was exceeded. Since the average test 

length is less than the fixed limit of 20 items a number of students 

satisfied the precision requirement but a large number must have 

received the maximum number of items without acceptable standard 

errors. For the strongest criterion (se(13 n)<0.3) the bank size was sufficient 

for the middle of the ability distribution but it was unable to ensure equi-

precise measurement for students at the extremes. This is illustrated by 

the flattening of the average test length at the tails of the se(P R)<0.3 

4-  std err < 0.6 

std err < 0.5 

std err-  < 0.4 

std err < 0.3 
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Figure 3.5 Test lengths for tests drawn from a 50 item bank  
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Figure 3.6 shows the average test lengths for tests drawn from a 150 

item bank. In this case all but the most precise tests achieved equi-

precise measurement over the ability range of interest. For the se(I n)<0.3 

criterion some students at the extremes of the ability distribution were 

not measured with the required accuracy. For the three shorter tests two 

to three more items are required at the extremes to ensure equi-precise 

measurement. 

A comparison of the average test lengths in Figures 3.5 and 3.6 

indicates that for all but the longest test the smaller item bank can 

produce estimates of equal precision with about the same number of 

items. For the se(13,0<0.6 criterion the lengths are almost identical, for the 

se([3.)<0.5 criterion there is an advantage of about one item at the 

extremes and for the se(13 a)<0.4 criterion there is an advantage of about 

one item except at the extremes were the 50 item bank showed stronger 

floor and ceiling effects. 
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Table 3.4 Theoretical limits on information and standard error  

Test Length Max Information Min Standard Error 

5 2.89 0.59 
10 5.79 0.42 
15 8.67 0.34 
20 11.58 0.29 
25 14.45 026 
30 17.34 0.24 

Simulation Set Three: The next two sets of simulations are for the 

partial credit model because they allow 8i2-Sil to vary, within the 

constraints 0<8;2-80 <1.5. The between item variation means that it is not 

possible to establish an exact theoretical framework for information and 

test length using (2.12) but if an average of Si2-8ii=0.75  is assumed, then 

the maximum information and minimum standard errors in Table 3.4 can 

be used as a guide. 

Table 3.4 indicates that we can expect slightly improved precision for 

this item bank than for the item bank used in simulation set one and two. 

This is because the smaller average value of S it -S i i  corresponds to a more 

peaked information curves. 

Figures 3.7 and 3.8 show the information curves for six tests drawn 

from the item banks with variable 8i2 -8i1 - 
As expected the curves are 

almost identical to those shown in Figures 3.1, 3.2, 3.3, and 3.4. Floor and 

ceiling effects are evidenced in all tests by the drop in information at the 

extremes of the ability distribution. This is particularly true for the longer 

tests drawn from the smaller item banks. As with previous results it 

would appear that for tests of up to about 15 items the smaller item 

banks may be sufficient. 
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A close comparison of Figure 3_1 and Figure 3.7 shows that the 

information provided by the tests drawn from the rating scale banks is 

slightly less than that drawn from the partial credit banks. This is due to 

the higher average maximum item information provided by items in the 

variable difference bank. As shown in the above discussion about 

information, as 6i2-6i1  decreases, the information functions become more 

peaked and have a greater maximum. Since the differences 8i2-Sil  in the 

variable difference bank are rectangulary distributed between 0 and 1.5 

the average maximum item information is slightly greater than the bank 

where 8 i2 - 15 i1 is fixed at one. 

Simulation Set Four -  In this simulation the fixed precision stopping 

criteria are used. By taking an average difference of 5 ;2 -S11=0.75 we use 

(2.12) to produce Table 3.5 which gives the minimum test lengths that 

would be required to reach the prescribed levels of precision. A 

comparison of Table 3.3 shows how the greater peak in the information 

curves for these items leads to fewer items being required to reach the 

prescribed levels of precision. 

Table 3.5 Theoretical minimum test lengths required to achieve  

specified levels of precision  

Specified 
	

Information 
	

Minimum 
Standard Error 
	

Test Length 

0.6 2.78 3.80 
0.5 4.00 6.91 
0.4 6.25 10.80 
0.3 11.11 19.19 
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The results in Figure 3.9 and 3.10 are almost identical to those shown 

in Figure 3.5 and 3.6. As we would expect from the comparison of Tables 

3.4 and 3.6 there is a slight advantage in favour of the variable 

differences in terms of test length. As with the improvement mentioned 

above this is due to the higher average information provided by each item 

in the bank. 

RECOVERY 

Bias 

Tables 3.6, 3.7, 3.8, and 3.9 show the average differences between 

the recovered and generating abilities for 10 groups of 100 students 

grouped according to their ability. Positive values indicate that the 

recovered abilities are greater than the generating abilities, while 

negative values indicate that the recovered abilities are less than the 

generating abilities. 

Tables 3.6, 3.7, 3.8 and 3.9 indicate three trends; (1) as the test 

length increases there is greater stability since the bias values become 

smaller, (2) as the bank size increases there is some tendency for greater 

stability and (3) there is greater stability at the middle of the ability 

distribution where fluctuations about zero appear to be smaller. 

Overall there does not appear to be any indication of bias in the 

ability estimation. The values in the tables are consistently small and 

would appear to result form random fluctuations. 



Table 3_6 Average differences between generating and recovered abilities  
for fixed length, fixed difference simulations  

Bank Size 

50 Items 100 items 200 items 

ability 5 
Test Length 

20 	30 
Test Length 

5 	20 	30 
Test Length 

5 	20 	30 

-3.15 .13 .00 -.04 .02 -.04 -.05 .22 .02 .04 

-2.45 -.02 .02 .01 .13 .05 .06 .05 -.01 .00 

-1.75 -.07 .00 -.02 -.08 .02 .00 -.04 -.03 -.02 

-1.05 -.03 .00 .00 -.19 -.08 -.04 -.01 .03 .00 

-0.35 -.08 .01 .02 -.05 .01 .02 .02 -.01 -.02 

0.35 -.06 .00 .01 .05 .00 -.01 -.03 .01 .03 

1.05 -.05 -.02 .00 .04 .01 -.01 -.02 .00 .00 

1.75 .03 .03 -.03 .05 .00 .02 -.02 -.06 -.02 

2.45 .13 .01 .00 .11 .00 .01 .04 -.01 .01 

3.15 -.09 .04 .05 -.18 -.03 -.02 .00 .00 . 03 
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Table 3.7 Avera e di fferences between en.iand recovered abilities 
for variable length, filed difference simulations  

Bank Size 

50 Items 	100 items 200 items 

ability 1 

	

Test Length 	Test Length 
2 	3 	4 	1 	2 	3 	A 

Test Length 
1 	2 	3 

-3.15 -.13 -.06 .00 .04 -.12 -.05-.03 -.03 -.20 -.12 -.07 -.06 

-2.45 -.06 -.08 -.04 -.01 -.17 -.08-.05 -.07 -.11 -.02 -.02 .01 

-1.75 -.01 -.04 .01 .01 -.01 .00-.04 -.02 -.05 -.03 .00 .03 

-1.05 -.04 -.09-.04 -.01 .16 .17 	.11 .06 -.05 -.05 -.04 -.02 

-0.35 .04 -.02 .01 -.01 -.02 .01 	.01 .00 .00 .01 -.02 .00 

0.35 .08 .09 .04 .00 -.04 -.02 	.00 .01 .00 .00 .00 .00 

1.05 .07 .03 .03 .01 -.01 -.02-.03 .00 .07 .10 .02 .00 

1.75 .00 .00 .00 -.02 .03 .02 	.02 .00 .09 .13 .07 .06 

2.45 -.06 -.04 .01 .00 -.02 -.04-.01 .02 .04 . 	00 .03 _01 

3.15 .09 .04-.01 -.05 .22 .14 	.05 .06 .04 .05 .02 .00 
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Table 3.8 Average differences between generating and recovered abilities  
for fixed length. variable difference simulations  

Bank Size 

50 Items 	100 items 	200 items 

Test Length 	Test Length 	Test Length 
ability 5 20 30 5 20 30 5 20 30 

-3.15 -.02 -.03 -.01 .00 -.04 -.04 .14 .06 .05 

-2.45 -.03 .01 -.02 .09 .06 .05 .03 -.03 .00 

-1.75 .14 .02 .01 -.05 -.01 .00 .09 .00 .00 

-1.05 -.11 .00 .01 -.02 -.01 -.02 -.09 .00 .00 

-0.35 -.05 -.01 -.01 .03 .01 .02 -.08 -.01 -.02 

0.35 -.03 -.03 -.03 .13 .01 -.01 .05 .02 .00 

1.05 -.05 -.02 -.01 .07 -.02 -.02 .01 -.02 -.01 

1.75 -.06 -.04 -.03 .01 .02 .03 .15 .01 .00 

2.45 -.07 .02 .01 .11 -.03 .01 .08 .00 .01 

3.15 -.06 -.01 .01 -.16 -.03 -.03 -.14 -.01 .01 
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Table 3.9 Average differences between generating and recovered abilities  
for variable length, variable difference simulations   

Bank Size 

50 Items 	100 items 200 items 

ability 1 

	

Test Length 	Test Length 
2 	3 	4 	1 	2 	3 	4 

Test Length 
1 	2 	3 	4 

-3.15 .19 .09 	.02 -.05 .15 .09 .03 -.03 .26 .17 .12 .08 

-2.45 .09 .09 	.06 .03 .19 .11 .09 .07 .17 .11 .01 .01 

-1.75 .00 -_01 -.01 .01 .03 .03 .02 -.01 .03 -.05 -.0! -.01 

-1.05 -.01 .04 	.03 .00 -.04-.05 -.02 .00 -.04 -.02 -.01 _00 

-0.35 -.05 -.03-.02 .02 .04 .01 .01 .01 .00 .01 -.03 -.01 

0.35 -.14 -.06-.07 .00 .09 .04 .03 .01 .02 .02 .02 .02 

1.05 -.07 -.03-.04 .00 .04 .02 .01 -.02 -.04 -.02 -.03 -.02 

1.75 -.01 -.04-.03 .02 -.01 .05 .04 .03 .02 .05 -.02 .01 

2.45 -.03 -.04 	.04 -.01 .01 .01 .00 -.02 -.01 -.01 -.01 -.01 

3.15 -.16 -.09 -.04 .04 -.21-.11 -.06 -.07 -.06 -.04 -.03 -.02 
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Table 3.10 Root mean square and average standard error for simulation  
set one  

Test Item Bank Size 
Length 50 75 100 150 200 

RMSE 
5 .67 .68 .72 .71 .71 
10 .44 .47 .48 .46 .46 
15 .38 .37 .39 .37 .38 
20 .34 .33 .33 .31 .32 
25 .31 .30 .30 .27 .28 
30 .31 .28 .27 .25 .25 

ASE 
5 .74 .73 .74 .74 .74 
10 .47 .47 .47 .47 .47 
15 .39 .38 .38 .37 .37 
20 .35 .33 .32 .32 .32 
25 .32 .30 .30 .29 .28 
30 .31 .28 .27 .26 .26 

Ratio RMSE/ASE 
5 .92 .93 .97 .97 .96 
10 .94 .99 1.02 .97 .98 
15 .98 .99 1.04 .99 1.01 
20 .99 .99 1.03 .97 .99 
25 .97 1.00 1.02 .96 .98 
30 .98 1.01 1.01 .97 .98 



Table 3.11 Root mean square and  error r s'mul ti 
set two 

Stopping 
Criteria 50 

Item Bank Size 
75 	100 150 200 

RMSE 
_55 -55 .58 .56 .56 se()<0.6 

se(p)<0.5 .46 .47 .49 .46 .47 
se(p)<0.4 .38 .39 .41 .38 .39 
se(13)<0.3 .31 .30 .30 .29 .30 

ASE 
.58 .58 .58 .57 .57 se(j)<0.6 

se(I3)<0.5 .49 .49 .49 .48 .48 
se(fi)<0.4 .40 .39 .39 .39 .39 
se(j)<0.3 .32 .30 .30 .30 .30 

Ratio RMSE/ASE 
.96 .96 1.01 .97 .98 se(p)<0.6 

se(p)a5 .96 .97 1.01 .96 .98 
se(I3)<0.4 .96 .98 1.04 .97 .99 
se(13)<0.3 .98 .99 1.01 .97 1.00 
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Table 3.12 Root mean square and average standard error for simulation 
set three  

Test Item Bank Size 
Length 50 75 100 150 200 

RMSE 
5 .73 .73 .73 .73 .73 
10 .47 .47 .47 .46 .46 
15 .38 .37 .37 .37 .37 
20 .34 .32 .32 .31 .31 
25 .32 .30 .29 .28 .28 
30 .31 .28 .26 .26 .26 

ASE 
5 .68 .68 .68 .69 .70 
10 .44 .48 .45 .45 .45 
15 .38 .38 .37 .36 .37 
20 .33 .32 .32 .31 .30 
25 .31 .30 .28 .27 .27 
30 .30 .28 .26 .25 .24 

Ratio RMSE/ASE 
5 .93 .93 .93 .95 .96 
10 .94 1.02 .98 .98 .98 
15 1.00 1.03 1.04 .97 1.00 
20 .97 1.00 .97 1.00 .97 
25 .97 1.00 .97 .96 .98 
30 .97 1.00 1.00 .96 .96 
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Table 3.13 Root mean square 	 dard ersxmlaLn. si m ulation  
set four  

Stopping 
Criteria 

RMSE  
se(13)<0.6 
se(p)<0.5 
se(ii)<0.4 
se(R)<0.3 

ASE 
se(13)<0.6 
se(B)<0.5 
se(13)<0.4 
se(p)<0.3 

Item Bank Size 
50 75 100 150 200 

-54 -55 -58 .56 .56 
.46 .47 .49 .46 .47 
.38 .39 .41 .38 .39 
.31 .30 .30 .29 .30 

.58 .58 .58 .57 .57 

.49 .49 .49 .48 .48 

.40 .39 .39 .39 .39 

.32 .30 .30 .30 .30 

Ratio RMSE/ASE 
se(p)<0.6 
se(13)<0.5 
se(j3)<0.4 
se(13)<0.3 

.96 .96 1.01 .97 .98 

.96 .97 1.01 .96 .98 

.96 .98 1.04 .97 .99 

.98 .99 1.01 .97 1.00 



Table 3.14 Correlations between recovered and genprating abilities  

Stopping 
ITEM BANK SIZE 

criteria 50 75 100 150 200 

Set 1 
5 .95 .94 .94 .94 .94 
10 .98 .97 .97 .97 .97 
15 .98 .98 .98 .98 .98 
20 .99 .99 .99 .99 .99 
25 .99 .99 .99 .99 .99 
30 .99 .99 .99 .99 .99 

N 956 967 967 961 962 

Set 2 
1 .97 .96 .96 .96 .96 
2 .97 .97 .97 .97 .97 
3 .98 .98 .98 .98 .98 
4 .99 .99 .99 .99 .99 

N 955 967 968 961 962 

Set 3 
.94 .94 .95 .94 .94 5 

10 .98 .97 .98 .98 .98 
15 .98 .98 .98 .98 .98 
20 .99 .99 .99 .99 .99 
25 .99 .99 .99 .99 .99 
30 .99 .99 .99 .99 .99 

N 956 968 969 963 962 

Set 4 
1 .96 .96 .96 .96 .96 
2 .97 .97 .97 .97 _97 
3 .98 .98 .98 .98 .98 
4 .99 .99 .99 .99 .99 

N 960 964 966 956 956 
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Efficiency  

Tables 3.10, 3.11, 3.12, and 3.13 show the average root mean square, 

the average standard error and the ratios of the average root mean 

square to the average standard error. In examining these tables it should 

be noted that the values in a column are not independent. Since the 

ability estimates were recorded after the administration of 5, 10, 15, 20, 

25 and 30 items for the fixed length analyses, and after the stopping rules 

were first satisfied for the fixed precision analyses the ability estimates 

are based on a number of items that were also included in the previous 

ability estimate. These tables illustrate a number of trends. Firstly, as test 

length increases both the root mean square and the average standard 

error decrease. Secondly, as bank size increases, both the root mean 

square and the average standard errors decrease. These results were 

expected since longer tests are more accurate -- if the items are 

appropriate -- and if a larger item bank is used the appropriateness of the 

items administered to an individual student should increase. 

The ratios RMSE/ASE compare the observed variation in the ability 

estimates with the modelled variation. If the adaptive testing procedure is 

working accurately the root mean square values should be equal to the 

average standard error and consequently the ratios should be equal to 

one. The nearness of the ratios to unity along with evidence of no bias 

indicates good recovery. 

The nearness of the ratios to unity also provides some evidence to 

support the use of asymptotic standard errors even when short tests are 

being used. There is some evidence that the ratios are closer to unity for 

the longest of the tests but the improvement is slight. 
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Correlations  

Table 3.14 shows the correlations between the generating and 

recovered values of the abilities along with the number of abilities that 

were succesfully estimated by each test. 

These correlations are all very close to one and suggest that little is 

to be gained by administering more than about 15 items or by using a 

bank of more than 50 items when all items are scored in three ordered 

categories and data conform to the partial credit model. Over this ability 

range, similar numbers of students could be measured at each bank size. 



4_ SUMMARY AND CONCLUSIONS 

In this report we have begun the exploration of adaptive testing 

strategies based on the Rasch rating scale and partial credit models. 

Adaptive testing technology, if applied with these models, could be applied 

to a wider range of item and test types than is currently possible. This 

could include attitude and personality scales scored in the likert tradition, 

problem solving tasks that use scoring that includes credit for partial 

understanding or partial completion, item clusters and interactive items. 

SIMULATIONS 

The results of the simulations reported in Chapter 3 indicate the 

potential of an adaptive testing procedure when items behave according 

to the model. The evidence regarding optimum test length and bank size 

provides a useful framework for practical test construction. 

The results using fixed length stopping rules indicate good recovery 

of students' abilities when tests of 5 to 30 items are constructed from 

banks of 50 to 200 items. Similarly the fixed precision analyses show that 

tests of 10 to 20 items can provide equi-precise measurement at 

acceptable levels of measurement precision, even when item banks with 

as few as 50 items are used. 

There appears to be little difference between item banks constructed 

with Si2-8i1 fixed at one or banks constructed of items with Si2-8ii varying 

between 0 and 1.5. A range that is usually considered desirable from a 

substantive perspective. 

The correlations show that the point estimates of students' abilities 

correlate satisfactorily with generating values of those parameters. 
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The information curves and the average standard errors show that 

tests of 15-20 items drawn from item banks of about 50-100 items 

provide ability estimates with reasonable precision. They also indicate 

that when a smaller item bank is used there may be little gain in 

administering more than about 15 items, particularly at the extremes of 

the ability distribution. This is because, for extreme abilities, there are 

fewer suitable items in the smaller bank. Any further items that are 

administered are of inappropriate difficulty. It would probably be 

desirable to add a condition that terminates testing if items a re not 

available to add some given amount of additional information. 

The average standard errors and the information curve plots show 

that little is to be gained in terms of the measurement precision beyond 

tests of about 15-20 items based on item banks with as few as 50-100 

items. The ratios of the root mean square to the average standard errors 

provided by the maximum likelihood procedure are very accurate, even 

for short tests. With the added evidence from the bias plots it can be 

concluded that the standard deviation about 13 as given by the root mean 

square is approximated closely by the standard errors. 

These results compare favourably with those that have been 

reported for adaptive tests based on dichotomously scored items. 

Research based on dichotomous items has generally concluded that about 

20 items are sufficient when selected from hanks of about 120 items, 

provided the item difficulty distribution has no major gaps. These 

simulations show that the use of good partial credit items may lead to 

further improvement in testing efficiency. 

INFORMATION FUNCTIONS 

A major section of the report focused on the information function for 

the rating scale and partial credit models. While information functions have 
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played a major role in adaptive testing with latent trait models that allow 

dichotomous scoring only, the relatively simple nature of these functions 

has made their application straightforward. For the rating scale and partial 

credit models the information functions are more complex and their 

application in adaptive testing is likely to be far from straightforward. The 

analysis undertaken in chapter 2 has identified a number of important 

points in relation to these models_ It highlights that Rasch models, as a 

general rule, do not require equal item discrimination. What Rasch models 

require is, equal item information. When applying the Rasch model the test 

constructor defines the amount of information provided by the item when 

the number of possible outcomes are specified. The distribution of the 

available information over the variable of interest is then determined by 

the item parameters. Some of the implications of different item information 

distributions on measurement precision are indicated in the simulations. 

For the simulations two different item bank types were used. The first, 

a rating scale bank, used Si2-15ii=i for all items (i.e., t1=-.5, T2=.5) and the 

second. a partial credit bank, used variable 6i2-6ii  with the constraint 

In the second bank, the difference bit-Sit was uniformly 

distributed between 0 and 1.5, so on average the items in the partial credit 

bank have more peaked information curves. However, since all items had 

the same number of categories the total information in the two item banks 

was equal. The results of the simulations indicate small but consistent 

advantages in precision and efficiency for tests drawn from the partial 

credit bank. It is likely therefore that a bank of items with Sit-6ii<0 will 

lead to even further increases in precision and efficiency. Similarly in the 

case of banks of items with more than three response categories it is likely 

that precision and efficiency will be maximized if items with more peaked 

information functions are included in the bank. 

Obviously, further investigation needs to be undertaken to explain 
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these issues more fully, but at a first look it appears that there is some kind 

of incompatibility between these observations and what we might call the 

substantive requirements of good measurement. 

FUTURE RESEARCH 

This report points directly to a range of further research questions. 

The simulations, for example, did not go beyond items with three response 

categories. What is gained by using items with perhaps five response 

categories? Five categories are commonly used in attitude rating scales 

scored in the likert tradition and adaptive attitude testing is an obvious 

future application for the RSM. What are the implications of using banks 

with items scored in different numbers of response categories? Will the 

items with fewer categories be of any value to measurement or will they be 

passed over for items with more categories that provide more information? 

The PCM simulations in chapter 3 varied the difference 6i2 -Oil in a limited 

way. What happens if S;2-S;1 is allowed more freedom to vary? For items 

with more than three response categories many variations on the 

relationships between the 6ii, 8;2 .. Sim  are possible. Other possibilities 

include -- What is the effect of different distributions of item parameters in 

the bank? And how do various estimation methods compare 
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