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Raw Score Nonlinearity Obscures Growth 
Historians and philosophers of science generally agree 
that measuring linear change lies at the foundations of 
modern science separating it from Aristotelian physics in 
the 17th century (Burtt, 1924).  Ever since Galileo 
described laws of terrestrial motion and Newton 
generalized them to celestial bodies, empirical measures 
of linear change have advanced theoretical science.  Not 
surprisingly, contemporary social theory suffers 
desperately from a profound inability to measure linear 
change with dismal implications for social science. 
 
Cronbach is widely recognized for describing raw score 
problems measuring change but abandoned this challenge 
to improve social research methodology by advising 
researchers to “frame their questions in other ways” 
(Cronbach & Furby, 1970, p. 80).  Virtually all 
commentaries and methods proposed since Cronbach 
have attempted to dismiss the limitations of measuring 
change with raw scores by offering feeble substitutes.  In 
general, these approaches are complicated (Cohen & 
Cohen, 1975), as well as controversial (see Ragosa et al., 
1982), while Collins and Horn (1991) suggest  only 
analyzing change not measuring it.   

 
 
 
While the literature is full of discussions about raw score 
problems in measuring change such as low reliability, 
spurious negative correlations with initial status, and lack 
of constant meaning (see Embretson & Reise, 2000), few 
researchers understand why raw scores are fundamentally 
flawed.  Consequently, the purpose of this report is to 
present an example of measuring change with both raw 
scores and linear units that may help clarify this problem. 
 
The data are 25,000 CAP (Child Assessment Profile; 
Chicago Public Schools, 1993-2002) raw score records 
that were collected by Chicago preschool teachers in 
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September (Observation 1) and the following June 
(Observation 2).  CAP consists of 65 items that represent 
five domains of early childhood learning sampled across a 
hierarchical construct.  Teachers dichotomously (0/1) 
score each child and higher summed scores indicate 
higher CAP growth.  Separation reliability is high (> .95) 
and person/item fit excellent .  Typical CAP items are 
“Count to 10”, “Names colors”, and “Writes own name”.   
 
Figure 1 shows initial transformation of CAP raw scores 
to linear logit measures, and, as expected, upper and 
lower tails show substantial raw score distortions.  A six 
point raw score difference in upper tail is four times 
greater when represented with logits.  While disturbing, 
these distortions commonly occur in raw score analyses. 
 
Figure 2 presents a less well known relationship between 
raw scores and linear measures with important 
implications for understanding meaningful gain 
measurement.  On the vertical axis appears CAP raw 
score change between Observations 2 and 1 (Obs2 raw 
scores – Obs1 raw scores).  Then CAP raw scores were 
transformed to logits and their differences (Obs2 logits – 
Obs1 logits) appear along the horizontal axis. 
Consequently, Figure 2 shows ordinal raw score 
differences matched with corresponding linear 
differences.  Some prominent results are:   
 
1. Every linear difference (Obs2 logits – Obs1 logits ) 
corresponds to a range of raw score differences.  The raw 
score range differs depending on Observation 1 initial 
status (see Figure 1).   
 
2. The range of raw scores corresponding to logits is 
enormous.  For example, CAP gain measuring four logits 
corresponds to a raw score range between 10 and 45 
points!  Conversely, a 10 point raw score gain 
corresponds to a logit range between .7 and 4 units. 
 
3. As logit values increase, raw score range diminishes.  
CAP gain of 7 logits corresponds to a raw score range 
between 40 and 60 points, while a gain of 9 logits only 

corresponds to a range between 55 and 60 points.  
 These results show that raw score change is virtually 
impossible to interpret with meaning and accuracy 
because position on the measurement construct is 
confounded with a nonuniform metric.  A 10-point raw 
score change, for example, appears to be the same for 
both high and low ability children but thee corresponding 
linear values show the change for high ability children to 
be four times greater.  A practical result of raw score 
interpretation is conflation of growth with nonlinearity.   
 
The effect of nonlinearity on growth interpretation in this 
example may be considered relatively benign because 
CAP is not high stakes and all children advance to 
kindergarten.  But most children start lower down where 
raw score distortion tends to inflate growth while 
underestimating child growth near the top.  Moreover, 
these raw score results suggest that children are much 
more homogenous than linear units would indicate and 
this distortion is further obscured when child scores are 
aggregated by preschool centers.   
 
Although program evaluators will find almost everyone 
improving on this assessment, raw score convolutions are 
too complicated to establish useful normative growth 
expectations or isolate child abnormalities.  The common 
strategy of aggregating raw scores into summary statistics 
only obscures the underlying problem of unequal scale 
intervals and eliminates an opportunity to understand 
individual growth.       

Nikolaus Bezruczko 
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Opening Remarks: International Objective Measurement Workshop XII 
June 30, 2004, Cairns, Australia

Prof.  Bernard  Moulden: 
Good morning everybody, and welcome to the Twelfth 
International Objective Measurement Workshop, hosted 
this year by James Cook University in Cairns.  
 
Because we are geographically a little off the beaten track 
in this little corner of paradise, you will understand that I 
can’t resist the opportunity to give you a 60-second burst 
of bragging about the university that of which I am 
privileged to be the Vice Chancellor and President. 
 
A few years ago James Cook University committed itself 
to the goal of becoming one of the top five universities of 
the world enhancing life in the tropics through education 
and research. At the time that might have seemed a bit of 
a stretch target for some, but recent objective evidence 
shows that in fact we are well on the way to achieving it. 
 
I know you are all interested in evidence and here is a 
piece of evidence that I like a lot. The recent survey by 
researchers at Shanghai’s Jiao Tong university identified 
the top 500 universities of the world in terms of their 
research performance.  That survey placed Harvard, 
Stanford, Caltech, and UC Berkeley at the top of the list. 
In fact it showed that the USA was home to 160 of the 
world top 500; Germany and the UK have about 40 each, 
and that Australia has just 13 universities in the world 
Top 500. Now of course I wouldn’t be telling you this if it 
wasn’t for the fact that James Cook University is one of 
those top 13, one of only three to be located outside of a 
capital city, and one of only two in Queensland - but wait, 
there’s more.  
 
Obviously a big university will nearly always produce 
more than a small one -  but if you measure not total 
output but research intensity, by dividing output by the 
number of staff -  then you discover that JCU ranks 
number three in Australia, behind ANU and Macquarie 
and, and with a research intensity score almost double that 
of the University of Queensland. 
 
Other evidence shows that if we look just at the 
universities located in the tropical regions JCU ranks in 
the top dozen in the world, and what is more, it shows that 
in some disciplines the impact measures of our scientist’s 
research - the number of times their work is cited by 
others - puts us in the top three or four in the world.  
 
So there you are - I bet you didn’t know that before, and I 
bet you feel a lot better now that you do. It certainly 
makes me feel good. 
 
Once upon a time - half a lifetime ago - I was a Professor 
of Psychology. I worked at what some of my colleagues 
called the “hard” end of the discipline, on the 
neurophysiology of vision. They worked at what I called 

the “‘soft” end, in what seemed to me to be a context of 
intrinsically untestable theory and either, on the one hand, 
a complete absence of quantitative data or, on the other, a 
wealth of data of indeterminate validity and an 
interpretability status that I could only charitably describe 
as astrological. Needless to say, we didn’t talk much. 
 
Until around 1970, the advance of science had generally 
been assumed to be smoothly cumulative. Then Thomas 
Kuhn published his remarkable book “The Structure of 
Scientific Revolutions” and established the notion that 
science proceeds in punctate steps, as one paradigm of 
thought replaces a previous one. Many people believe that 
Rasch analysis, or perhaps more generally Item Response 
Theory, constitutes a significant enough change in 
thought and approach to social sciences to merit the status 
of a genuine paradigm shift. 
 
Indeed, in 2003 Mark Blais, of Harvard Medical School, 
wrote a book review entitled “Have you heard we’re 
having a revolution? The coming of modern test theory” 
[Journal of Personality Assessment, 80, 2: 208-210]. The 
book in question was of course Bond & Fox’s ambitiously 
titled “Applying the Rasch model: Fundamental 
Measurement in Human Science”. Ambitious it may 
have been, but Blais was clearly converted: “This is a 
great book”, he said, “and reading it...might just make you 
part of the quiet revolution in test development.” (Trevor 
Bond can make the usual commission payments to the 
Vice Chancellor’s special account.) 
 
Having seen the briefing notes for your conference I’m in 
no doubt that a genuine revolution has occurred, and I 
suspect that it is well on the way to robbing the ‘hard 
science/soft science’ dimension of any reality that it may 
ever have had. I envy you the exciting sense of redefining 
the frontiers that you must all be enjoying, and I wish you 
well in your enthusiastic development of the new 
paradigm. From what I said at the outset I have no doubt 
you will find that James Cook University provides the 
ideal intellectual environment and context for your 
scholarly activities.  
 
Colleagues, I apologize for not being there in person to 
greet you, and I can’t even use pressure of work as an 
excuse because in June I shall be on recreational leave in 
Europe. I hope that northern Queensland is living up to its 
reputation as being glorious one day and perfect the next, 
and round about now I shall be thinking of you with envy 
and probably longing to be home. Even from the Loire 
Valley I shall be envying you your immersion in 
stochastic Guttman ordering, conjoint additivity, 
Campbell concatenation, sufficiency, and infinite 
divisibility. 
 
Thank you for listening, enjoy yourselves, and welcome.
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Plausible Values
Plausible values were first developed for the analyses of 
1983-84 NAEP (National Assessment of Educational 
Progress) data, by Mislevy, Sheehan, Beaton and Johnson, 
based on Rubin’s work on multiple imputations.  
Plausible values were used in all subsequent NAEP 
surveys, TIMSS and now PISA. 
 
What Plausible Values Are 
The simplest way to describe plausible values is to say 
that plausible values are some kind of student ability 
estimates. There are some differences between plausible 
values and the θ (student ability parameter) as in the usual 
1, 2 or 3-PL item response models. Instead of directly 
estimating a student’s θ , we now estimate a probability 
distribution for a student’s θ.  That is, instead of obtaining 
a point-estimate for θ, we now come up with a range of 
possible values for a student’s θ, with associated 
likelihood of each of these values.  Plausible values are 
random draws from this (estimated) distribution for a 
student’s θ  (I will call this distribution “the posterior 
distribution”). 
 
Mathematically, we can describe the process as follows: 
Given an item response pattern x, and ability θ,  let f (x/θ) 
be the item response probability, f (x/θ) could be 1, 2 or 
3-PL model, for example).  Further, we assume that θ 
comes from a normal distribution g (θ) ∼ Ν(µ, �²).  (In our 
terminology, we often call f (x/θ) the item response 
model,  and g (θ) the population model). It can be shown 
that, the posterior distribution, h (θ/x), is given by 

( ) ( ) ( )
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That is, if a student’s item response pattern is x, then the 
student’s posterior (θ) distribution is given by h (θ/x).  
Plausible values for a student with item response pattern x 
are random draws from the probability distribution with 
density h (θ/x). Therefore, plausible values provide not 
only information about a student’s “ability estimate”, but 
also the uncertainty associated with this estimate. 
 
If we draw many plausible values from a student’s 
posterior distribution h (θ/x), these plausible values will 
form an empirical distribution for h (θ/x) (as plausible 
values are observations from h (θ/x)).  So if a data analyst 
is given a number of plausible values for each student, an 
empirical distribution of h (θ/x) can be built for that 
student.  This is done because there is no nice closed form 
for h (θ/x) to give to data analysts, except for through the 
empirical way (plausible values) (unless you have 
ConQuest).  Typically, 5 plausible values are generated 
for each student (and deemed sufficient to build an 
empirical distribution!)   
 
As plausible values are random draws from a student’s 
posterior distribution, plausible values are not appropriate 

to be used as individual student scores for reporting back 
to the students.  Suppose two students have the same raw 
score on a test, their plausible values are likely to be 
different as these are random draws from the posterior 
distribution.  Imagine the outcry if we ever give two 
students different ability scores when they have the same 
raw score.  However, plausible values are used to estimate 
population characteristics, and they do a better job than a 
set of point estimates of abilities.   I will give more details 
about this in the next section.  In NAEP, TIMSS and 
PISA, we do not report individual scores.  We only 
estimate population parameters such as mean, variance 
and percentiles. 
 
Why We Need Plausible Values 
So why are plausible values used?   
(1) Some population estimates are biased when point 
estimates are used to construct population characteristics. 
(2) Secondary data analysts can use “standard” 
techniques (e.g., SPSS, SAS) to analyze achievement data 
provided in the form of plausible values. 
(3) Plausible values facilitate the computation of 
standard errors of estimates for complex sample designs. 
 
Plausible Values versus Point Estimates 
If we are interested in the population characteristics of 
some ability, Θ, one way to go about it is to compute an 
estimate for each student, nθ̂ , and then compute the 

mean, variance, percentiles, etc. from these nθ̂ . 

Consider two possible estimates for nθ̂ : the Maximum 
Likelihood Estimate (MLE) and the Expected A-
Posteriori  estimate (EAP).  In the case of the 1-parameter 
(Rasch) model, MLEs are ability estimates that maximise 
the likelihood function of response patterns  

( )[ ]
( )∏∏ −+

−

n i in

ininx
δθ
δθ

exp1
exp ,    

where i is the index over items, and n is the index over 
people, and xin is the item response (0 or 1) for person n 
on item i.  We use the formula for dichotomous items, for 
simplicity.  That is, MLE estimates only involve the item 
response model. There is no assumption about the 
population model. 
 
Mean and Variance 
It can be shown that if nθ̂ s are MLEs, the mean of nθ̂ is 
an unbiased estimate of µ, the population mean of Θ.  But 

the variance of nθ̂ is an over-estimate of �², the 

population variance. But if our nθ̂ s are EAPs (e.g.,  
ability estimates from Marginal Maximum Likelihood  
MML models), where we assume an item response model, 
e.g., f (x/θ), it can be shown that the mean of EAPs is an 
unbiased estimate of the population mean, µ, but the 
variance of the EAPs is an under-estimate of �². In both 
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the MLE and EAP cases, the bias does not go away when 
the sample size increases.  The bias is reduced when the 
number of items increases, and can be removed by a 
mathematical disattenuation.  
 
One way to overcome the vairance bias problem is to use 
the MML and directly estimate µ and �² without going 

through the step of computing individual nθ̂ . This is 
possible with MML because we can integrate out the 
ability parameter θ  in the likelihood equation: 

( ) ( ) ( )�= θθθ dgxfxf /  

so that the parameters to estimate are only δi (item 
difficulties), and �µ and �² (population parameters). Such 
direct estimation method will give unbiased results for µ 
and �². This is what ConQuest does. But most data 
analysts do not have ConQuest or other similar software 
that will enable them to do this direct estimation easily.  
Data analysts have available to them general statistical 
software such as SPSS and SAS.  To allow the data 
analysts to compute the correct estimates of population 
parameters, plausible values are provided. 
 
Recall that plausible values are random draws from each 
student’s posterior distribution.  The collection of 
posterior distributions for all students, put together, gives 
us an estimate of the population distribution, g (θ).  
Therefore, we can regard the collection of plausible 
values (over all students) as a sampling distribution from 

g (θ)�.  This is an important statement, and some results 
follow from this statement: 
 
(1) Population characteristics (e.g., mean, variance, 
percentiles) can be constructed using plausible values. 
 
(2) Supppose we generate 5 plausible values for each 
student, and form 5 sets of plausible values (set 1 contains 
the first plausible value for each student; set 2 contains 
the second plausible value for each student, etc.).  Then 
each set is equally as good for estimating population 
characteristics, as each set forms a sampling distribution 
of g (θ).  It follows that, even if we only use one plausible 
value per student to estimate population characteristics, 
we still have unbiased estimates, in contrast to using each 
student’s EAP estimates (mean of plausible values for 
each student) and getting biased estimates.  So the 
apparent paradox is that using one random draw (PV) 
from the posterior distribution is better than using the 
mean of the posterior, in terms of getting unbiased 
estimates. 
 
Percent Below Cutpoint and Percentiles 
The following example shows why point estimates are not 
the best for estimating percent in bands or percentiles. 
Suppose we have a 6-item test, so students’ test scores 
range from 0 to 6.  The Figure above shows the 7 
(weighted) posterior distributions, corresponding to the 7 
possible scores, and the corresponding EAP estimates 
(shown by the black vertical lines). 

Averaged over 
10 replications: MLE EAP PV1 PV2 PV3 PV4 PV5 Direct 

Estimate 
Generating 

value 
Ability 

variance -0.05 -0.05 -0.05 -0.04 -0.06 -0.04 -0.05 -0.05 0 

Ability mean 1.45 0.78 1.01 0.99 1.01 1.00 1.01 1.00 1 

Score 0 

Score 1 

Score 2 

Score 3 Score 4 

Score 5 

Score 6 

Figure: Proficiency on Logit Scale 
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Suppose we are interested in the proportion of students 
below a cutpoint, say –1.0.  If we use EAP estimates, then 
the proportion of people below –1.0 is the proportion of 
people obtaining a score of 0.  In fact, for any cutpoint 
between EAP0 and EAP1, we obtain this same proportion 
because the (EAP) ability estimates are discrete, not 
continuous. In contrast, if we look at the area of the 
curves of the posterior distributions that is below –1.0, we 
see that this is a continuous function, and that this area 
contains contributions from all posterior distributions 
(corresponding to all scores). 
 
As plausible values are random draws from the posterior 
distributions, the proportion of plausible values below a 
cutpoint gives us an estimate of the area of the posterior 
distributions below that cutpoint.  By using plausible 
values, we are able to overcome the problems associated 
with the discrete nature of point estimates. Similarly,  for 
percentiles, using plausible values will overcome the 
problem of having to interpolate between discrete ability 
estimates. 
 
Some Simulation Results 
Some simple simulation results are shown in the Table. A 
data file containing student responses was generated for a 
20-item test with 300 students whose abilities were 
sampled from N(0,1).  MLE, EAP and 5 PVs were 
computed for each student, and the sample mean and 
variance (across students) were computed for each of 
these estimates.  This process was repeated 10 times (10 
replications).  Plausible values (and direct estimation) do 
a better job for estimating the population variance.  That 
is, had we provided data analysts with students’ MLE (or 
EAP) ability estimates, they would not be able to recover 
the variance (and other statistics such as percentiles) 
correctly. 
 
Margaret Wu,  
Australian Council for Educational Research 
 
Beaton, A. E. & Gonzalez, E. (1995). NAEP Primer. 

Chestnut Hill, MA, Boston College. 
Journal of Educational Statistics (Summer 1992) Special 

Issue: NAEP. 
Journal of Educational Measurement (Summer 1992) 

Special Issue: NAEP 

“The significant problems we face cannot be solved at the 
same level of thinking we were at when we created them.” 

Albert Einstein (1879-1955) 
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Developing Item Response Theory 
Software for Outcomes and Behavioral 

Measurement 
Solicitation of the Public Health Service for Small 
Business Innovation Research contract proposals #211. 

Proposal receipt date: November 5, 2004 

http://grants.nih.gov/grants/funding/sbir.htm 
Excerpts from the Solicitation: 

The goals of this topic are to develop and/or adapt 
software that employs both traditional and modern 
measurement methods [i.e., item response theory (IRT) 
modeling] to respond to the needs of cancer outcomes, 
health surveillance, and behavioral researchers. Software 
should be user-friendly, flexible, and inclusive of a 
variety of IRT models for both dichotomous and 
polytomous response data, with sophisticated graphic 
capabilities, tests of model fit, and extensions of the 
software for multi-dimensional modeling, testing for 
differential item functioning, linking questionnaires, and 
computerized-adaptive testing. 

Phase I Activities and Expected Deliverables: The 
contractor should consult with both leading 
psychometricians who have experience in IRT modeling 
and health outcomes, health surveillance, and behavioral 
researchers who have a range of training in measurement 
to help shape the functionality and presentation of the 
software and literature to be developed in Phase II. 
Deliverables should include: (1) a complete program 
design and specification, (2) an outline of the manual and 
primer, and (3) a prototype of the software that responds 
to the minimal changes recommended in this proposal. 
Offerors may request a one year Phase I.  

Phase II Activities and Expected Deliverables: Develop 
the full IRT software and supporting documents based on 
Phase I findings including beta-testing of the software on 
a variety of datasets among healthcare researchers with a 
variety of measurement backgrounds. Also, develop a 
curriculum, evaluation measures, and other educational 
materials designed to integrate this software into the 
healthcare community. Deliverables will include: (1) the 
software, (2) the manual, primer, and other educational 
materials, and (3) at least one article describing the 
development and evaluation of the program that is 
suitable for publication in appropriate scientific journals 
and/or books. 

Phase I awards will be firm fixed price contracts. 
Normally, Phase II awards will be cost-plus-fixed-fee 
contracts. Normally, Phase I contracts may not exceed 
$100,000. Phase II contracts normally may not exceed 
$750,000.  Work must be performed by a Small Business 
in the USA. 

Relevant contact: Bryce Reeve, reeveb@mail.nih.gov 

http://www.rasch.org/rmt/
http://grants.nih.gov/grants/funding/sbir.htm
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Book: Introduction to Rasch Measurement: Theory, Models, and Applications 
Edited By Everett V. Smith, Jr. and Richard M. Smith

24 chapters (700 pages, $47), written by the leading 
experts in Rasch measurement. More details are at 
www.jampress.org  

 I. Foundations  
1. An Overview of the Family of Rasch Measurement 

Models. Benjamin Wright, University of Chicago 
Magdalena Mo Ching Mok, Hong Kong Institute of 
Education  

2. Estimation Methods for Rasch Measures. J. Michael 
Linacre, University of Sunshine Coast 

3. Rasch Model Estimation: Further Topics. J. Michael 
Linacre, University of Sunshine Coast 

4. Fit Analysis in Latent Trait Measurement Models. 
Richard Smith, Data Recognition Corporation  

5. Evidence of the Reliability of Measures and Validity of 
Measure Interpretation: A Rasch Measurement 
Perspective. Everett Smith, University of Illinois at 
Chicago 

6. On Choosing a Model for Measuring. Mark Wilson, 
University of California, Berkeley  

7. Controversy and the Rasch Model: A Characteristic of 
Incompatible Paradigms? David Andrich, Murdoch 
University  

8. Understanding Resistance to the Data-Model 
Relationship in Rasch’s Paradigm: A Reflection for 
the Next Generation. David Andrich, Murdoch 
University  

II. Basic Applications  
9.   Substantive Scale Construction. Mark H. Stone, Adler 

School of Professional Psychology  
10. Rasch Measurement: The Dichotomous Model. 

Randall Schumacker, University of North Texas  
11. Optimizing Rating Scale Category Effectiveness. J. 

Michael Linacre, University of Sunshine Coast  
12. Partial Credit Model and Pivot Anchoring. Rita Bode, 

Rehabilitation Institute of Chicago  
13. Construction of Measures from Many-Facet Data. J. 

Michael Linacre, University of Sunshine Coast 
Benjamin Wright, University of Chicago  

14. An Introduction to Multidimensional Measurement 
using Rasch Models. Derek C. Briggs, University of 
Colorado Mark Wilson, University of California, 
Berkeley  

15. Metric Development and Score Reporting in Rasch 
Measurement. Everett Smith, University of Illinois at 
Chicago  

III. Advanced Applications  
16. Equating and Item Banking with the Rasch Model. 

Edward Wolfe, Michigan State University  
17. Detecting Item Bias with the Rasch Model. Richard 

Smith, Data Recognition Corporation  
18. Rasch Techniques for Detecting Bias in Performance 

Assessments: An Example Comparing the 
Performance Native and Non-Native Speakers on a 
Test of Academic English. Catherine Elder, 

University of Auckland Tim McNamara, University of 
Melbourne Peter Congdon, Victorian Curriculum 
and Assessment Authority  

19. Objective Standard Setting (or Truth in Advertising). 
Gregory Stone, University of Toledo  

20. Detected and Measuring Rater Effects using Many- 
Facet Rasch Measurement: Part I.  

21. Detected and Measuring Rater Effects using Many- 
Facet Rasch Measurement :Part II. Carol Myford, 
University of Illinois at Chicago Edward Wolfe, 
Michigan State University  

22. Detecting and Evaluating the Impact of 
Multidimensionality using Item Fit Statistics and 
Principal Component Analysis of Residuals. Everett 
Smith, University of Illinois at Chicago  

23. Computer Adaptive Testing. Richard Gershon, 
Northwestern University  

24. The Rasch Model, Additive Conjoint Measurement, 
and New Models of Probabilistic Measurement 
Theory. George Karabatsos, University of Illinois at 
Chicago    

 

 
Why Not Estimate Ability by Merely 

Adding Up Item Difficulties? 
Question: “One thing that I struggle with is why one 
doesn’t add up the item difficulties for the items 
endorsed/answered correctly in order to estimate a 
person’s ability level?” 

Response: Yes, this can be perplexing. Let’s look at the 
simplest case.  Suppose that we have 100 equally difficult 
items. which are at the local origin of the scale, and so are 
of 0 logit difficulty. A high performer would get most of 
them, say 90, correct. A low performer might get 10 
correct. What ability levels do these performances 
indicate? No matter how we add up, subtract or multiply 
the item difficulties, the high performer would be reported 
with an ability of 0 logits, exactly the same as the low 
performer. But this is the type of test which E. L. 
Thorndike (1904) stated to be ideal. Indeed, the Rasch 
model can be derived from Thorndike’s criteria (RMT 
14:3, p. 763).  In fact, this simple case is an example of 
Bernoulli binomial trials. The logit ability of the high 
performer is the average item difficulty, 0, plus the log-
success-to-failure-ratio, log(90/10) = 2.2 logits. The logit 
ability of the low performer is the item difficulty, 0, plus 
the log-success-to-failure-ratio, log(10/90) = -2.2 logits. 

From this example, we can see that more is required to 
estimate ability than merely adding up item difficulties.  

John M. Linacre 

Thorndike, E.L. (1904). An introduction to the theory 
of mental and social measurements. New York: 
Teacher’s College. 

http://www.jampress.org
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Ordinal vs. Ratio Revisited Again
Roberts (1994, pp. 625-6) points out that, in measuring: 
“...one seeks to assign numbers to objects so that a is 
judged louder than b if and only if the number assigned to 
a is greater than the number assigned to b. Such a 
mapping from objects to numbers is called a 
homomorphism from the observed relation to the 
numerical relation. In measurement theory, scales are 
identified with homomorphisms. Formally, an admissible 
transformation of a scale is then a transformation of the 
numbers assigned so that one gets another 
homomorphism.” 
 
Thus, Roberts (p. 626) continues: 
“One of the goals of research in the theory of 
measurement is to develop a collection of tools which can 
be used to determine what assertions can meaningfully be 
made and what conclusions can meaningfully be drawn, 
using scales of measurement. A statement involving 
scales of measurement is called meaningful if its truth 
value is unchanged whenever every scale in the statement 
is modified by an admissible transformation. This 
definition goes back to Suppes (1959) and Suppes & 
Zinnes (1963). (While it is not mentioned explicitly in the 
work of Stevens, it is inherent in his treatment of 
admissible transformations; see Mundy (1986).)” 
 
Roberts (p. 627) concludes his summary of measurement 
theory saying: 
“The notion of meaningfulness is concerned with which 
assertions it makes sense to make, and which ones are just 
artifacts of the particular version of the scale of 
measurement that happens to be in use. This notion of 
meaningfulness is closely related to the concept of 
invariance in classical geometry.” 
 
“The definitions we have given are reasonably well 
accepted, at least to the extent that it is widely agreed that 
‘invariance’ is a desirable condition and that it is implied 
by ‘meaningfulness’.” 
 
The Consequences of Ordinal Status for Measurement 
Roberts (pp. 628-30) then gives a list of meaningful and 
meaningless statements, and shows the logical fallacy 
involved in averaging and comparing raw scores. One 
example shows that we have the strong tendency to treat 
ordinal scales as interval, contrary to the empirical fact 
that the spacing between the categories is unknown. When 
this fact of unknown and likely variable spacing is 
recognized, we see that the categories may be acceptably 
scored by any algorithm that maintains their order, no 
matter how different the spacing between them. That is, 
ordinal homomorphisms do not restrict the spacing of the 
categories, but only their order, since the spacing is 
unknown. 
 
Roberts gives the example of two groups of three 
individuals each rated once on a five-point scale, scored, 

as is commonly deemed the natural way of proceeding, as 
1, 2, 3, 4, 5. Group 1 scores 4, 4, and 4; group 2 scores 5, 
4, and 1. Group 1’s mean of 4 is higher than group 2’s 
mean of 3.33.  
 
Now, given that we recognize and accept our scale’s 
status as ordinal, the ratings may be transformed in any 
way that invariantly preserves their order. A logical and 
scientific way of proceeding to test the hypothesis of the 
group difference would then require that we try out 
different admissible transformations of the scale to see if 
we obtain the same result. Roberts accordingly rescores 5s 
as 200, 4s as 100, 3s as 50, 2s as 20, and 1s as 3. Now 
group 1 has a mean of 100, and group 2 has a mean of 
101.  
 
The change in the ordering of the groups in the context of 
an admissible transformation of the raw scores renders 
any test of a hypothetical average difference between the 
groups undecidable; the failure of invariance makes any 
statement about the groups’ order meaningless.  Roberts 
notes that comparing the group medians would be 
meaningful, since the order would always be preserved 
across admissible transformations.  
 
Though Roberts does not go into it, we see in this 
example why ordinal comparisons are commonly justified 
within the context of normal distributions and similar 
standard deviations. The two groups of scores in Roberts’ 
example have significantly different standard deviations 
(Group 1 SD = 0; Group 2, 2.08). Were the scores in 
Group 1 more dispersed, or those in Group 2 less so, the 
original scoring’s order would more likely be preserved 
across permissible transformations.  
 
Even though similar and normally distributed variation 
across groups can aid in preventing meaningless 
assertions, ones that “are just artifacts of the particular 
version of the scale of measurement that happens to be in 
use,” a number of other problems dog ordinal scores 
(Wright & Linacre, 1989). As was recognized by Wilson 
(1971):  

“The ordinal level of measurement prohibits all but the 
weakest inferences concerning the fit between data 
and a theoretical model formulated in terms of interval 
variables.... The task of developing valid, reliable 
interval measurement is not a technical detail that can 
be postponed indefinitely while the main efforts in 
sociological research are devoted to substantive theory 
construction; rather it is the central theoretical and 
methodological problem in scientifically-oriented 
sociology.” 

 
It is in this context that one sees the real truth and value of 
an opinion widely held among natural scientists and often 
attributed (Wise, 1995, p. 11) to Ernest Rutherford, 
winner of the 1908 Nobel Prize in Chemistry, namely, 
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that if your experiment requires statistics, then you should 
have designed a better experiment. This opinion is 
expressed by Feinstein (1995), the long-time editor of the 
Journal of Clinical Epidemiology, in his critical 
examination of meta-analytic methodology. The 
implication is that when measurement is realized, it 
provides all the relevant information needed to make 
informed judgments about more and less. 
 
Roberts provides another 30 pages of analyses concerning 
the kinds of conclusions that may be logically drawn from 
different scales of measurement in different contexts. He 
does not take up the problem of how interval/ratio scales 
might be calibrated on the basis of ordinal observations. 
 

Ordinal to Ratio 
To take up this question ourselves requires first of all 
recognizing that the rating scale is simply a generic way 
of labeling observations that we suppose involve some 
increasing amount of something. At the start of a new 
investigation into a new construct, we do not know how 
much increase is represented by any transition across 
categories, or even whether any increase at all is 
represented by these transitions. It may, after all, turn out 
that the construct cannot be quantified, or that the items 
and/or people brought together to explore the construct’s 
quantitative status do not work well together, and so 
falsify the quantitative hypothesis. 
 
Accordingly, how the categories are labeled is irrelevant. 
The labels are there only so that we can unambiguously 
distinguish them from one another and place them in 
ascending qualitative order according to some construct 
theory. The object of our interest is how many 
observations are labeled by each category. When that is 
ascertained, then we can estimate the log-odds that any 
respondent will reply in any one of the categories relative 
to any other category, for any item or group of items. The 
numbering of the rating scale categories is merely a 
convenience to facilitate thinking and to simplify the log-
odds estimation procedure. 
 
As is demonstrated in numerous developments in Rasch 
measurement theory and applications (Andrich, 1978a, 
1978b; Linacre, 1999, 2002; Wright & Masters, 1982), 
this analysis reveals whether the rating categories are in 
fact ordered as hypothesized, and, if so, what their actual 
spacing is. Each numeric unit increase in the measures 
homomorphically maps the observed relation onto the 
numeric relation. The log-odds unit provides a ratio scale 
in the sense that any meaningful difference between two 
ratings, two items, two respondents, a respondent and an 
item, or a respondent and a category on an item could be 
identified as the smallest meaningful unit of 
measurement, and all other differences could be scaled in 
that unit. In other words, any magnitude difference can be 
divided up into any number of smaller ratio-unit 
differences, or divided into any number of larger ones, 

with no change in either the order or the proportionate 
spacing of any individual measures or group averages. 
 
Admissible transformations for ratio scales are then those 
that preserve both the order of the relations as well as the 
magnitude of their proportionate spacing. Had the 
measures given in Roberts’ example of the 
meaninglessness of averaged ordinal scores been ratio, all 
permissible transformations would have invariantly 
maintained the same proportionate difference between the 
individual measures and between the groups’ average 
measures. 
 

The Structure of Scientific Laws 
Roberts closes his article with speculations based in 
Luce’s (1959, 1990) classic article on the ratio form of 
scientific laws in general. When both independent and 
dependent variables are ratio scales, scientific laws are 
power laws. In Ohm’s Law, for instance, voltage is 
proportional to current when resistance is fixed. 
 
These comments echo similar observations made by 
Rasch (1960, pp. 110-5) concerning the identical form 
shared by his model for reading measurement and 
Maxwell’s model for the relations of mass, force, and 
acceleration. Just as force is proportional to acceleration 
when mass is fixed, so, too, is reading ability proportional 
to reading comprehension when the reading difficulty of 
the text is fixed.  
 
Roberts (p. 664) points out that researchers have been 
able to establish psychological laws that conform with 
Luce’s method “only in rather limited circumstances.” 
This conclusion would seem to clash with the widespread 
applicability to an enormous variety of data types enjoyed 
by Rasch’s models. Rasch software routinely 1) scales 
both the independent and dependent variables in ratio 
form, and 2) assesses and isolates failures of invariance 
via fit analysis, overcoming both of the major barriers to 
identifying and testing scientific power laws.  
 
Perhaps because construct theory continues to be 
underdeveloped, the value of the laws established by 
means of Rasch scaling remains under-appreciated. The 
invariant stability of the qualitative relations quantified in 
Rasch measurement constitutes a fundamental form of 
capital. But much remains to be done before the human 
and economic value of that capital is leveraged in 
practical applications. 

William P. Fisher, Jr. 

Andrich, D. A. (1978a). A binomial latent trait model for 
the study of Likert-style attitude questionnaires. British 
Journal of Mathematical and Statistical Psychology, 31, 
84-98. 

Andrich, D. A. (1978b). A rating formulation for ordered 
response categories. Psychometrika, 43, 357-374. 
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Equating Rehabilitation Outcome Scales: Developing 
Common Metrics, Richard M. Smith and Patricia A. 
Taylor, p. 229-242 

Using Rasch Models to Reveal Contours of Teachers’ 
Knowledge, Constantia Hadjidemetriou and Julian 
Williams, p. 243-257 

Validations of Scores with Self-Learning Scales for 
Primary Students using True-Score and Rasch 
Measurement Methods, Magdalena Mo Ching Mok, p. 
258-286 

Reporting the Incidence of School Violence across Grade 
Levels in the U.S. using the Third International 
Mathematics and Science Study (TIMSS), Lei Yu, p. 287-
300 

Pre-Equating: A Simulation Study based on a Large-Scale 
Assessment Model, Husein M. Taherbhai and Michael J. 
Young, p. 301-318 

The Equivalence of Three Data Collection Methods with 
Field Test Data: A FACETS Application, Mark Pomplun 
and Michael Custer, p. 319-327 

Understanding Rasch Measurement: Rasch Measurement 
using Dichotomous Scoring, Randall E. Schumacker, p. 
328-349 

Richard M. Smith, Editor 
Journal of Applied Measurement 
P.O. Box 1283, Maple Grove, MN 55311 
JAM web site: www.jampress.org 

Effect of Rater Leniency Effect of Rating Range-Restriction 

Investigation of 360-Degree Instrumentation Effects: Application of the Rasch Model,  
John T. Kulas (2004) Society for Industrial and Organizational Psychology (Poster) 

http://www.rasch.org/memo44.htm
http://www.jampress.org
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An Introduction to Rasch Measurement: Theory and Applications 
November 6-7, 2004 Chicago, IL

The purpose of this training session is to introduce participants to the theory and applications of Rasch measurement and 
provide hands-on experience using Rasch calibration programs to scale ordinal data. This session will provide participants 
with the necessary tools to become effective consumers of research employing Rasch measurement and the skills necessary to 
solve practical measurement problems. Instructional material will be based on four Rasch measurement models: 
dichotomous, rating scale, partial credit, and many-facet data. Participants will have the opportunity to use current Rasch 
software. Directors: Everett V. Smith Jr. and Richard M. Smith. 
 
The format will consist of eight self-contained units. The units are: Introduction to Rasch Measurement; Item and Person 
Calibration; Dichotomous and Polytomous Data; Performance and Judged Data; Applications of Rasch Measurement 
I and II; Examples of Rasch Analyses; and Analysis of Participants Data. The co-directors will divide the topics in each 
session to maximize individual strengths. The instructional format will combine lecture, question and answer, and small 
group instruction.  
 
Registration includes the full 2-day workshop, a 
continental and bagel bar breakfast each morning, over 800 
pages of handouts and tutorial material, a copy of 
Introduction to Rasch Measurement (a 698 page book) and 
a one-year subscription to the Journal of Applied 
Measurement. More details are at www.jampress.org  

Audience: Anyone interested in learning about the 
practical aspects of Rasch measurement. Previous training 
in measurement is recommended, but not necessary.  

Location: Chicago Circle Center (CCC) building on the 
campus of the University of Illinois at Chicago. The CCC 
is located at 750 South Halstead Street, Chicago. 

Agenda: Saturday, November 6, 2004 
 Session I – Introduction to Rasch Measurement: What is 

Measurement, Rasch Measurement Models, True 
Score vs. Rasch Measurement Models. 

Session II – Item and Person Calibration: Testing the Fit of 
Data, Dimensionality and PC Analysis of Residuals. 

Session III – Dichotomous and Polytomous Data: 
WINSTEPS Control Language, Example of 
dichotomous data analysis, Example of polytomous 
data analysis. 

 Session IV – Performance and Judged Data: FACETS 
Control Language & example of facets analysis with 
nested data (ratings of conference proposals), Example 
of facets analysis and G-Theory (ratings of student 
performance).  

Group dinner (optional) 

Sunday, November 7, 2004  
Session V – Applications of Rasch Measurement: Score 

Reporting, Standard Setting, Item Bias. 
 Session VI – Applications of Rasch Measurement: Test 

Equating and Item Banking, Computer Adaptive 
Testing, Rasch vs. Multi-Parameter IRT Models. 

Session VII – Examples of Rasch Analyses: Rating Scale 
Data, Partial Credit Data.  

Session VIII – Analysis of Participants: Running 
WINSTEPS and FACETS, Other Rasch software: 
RUMM, Conquest, MULTIRA, WINMIRA, and 
LPCM-WIN, Your turn to analyze data. 

COMET and IOM Chicago Chapter at UIC 
3:30 PM, Thursday, September 23, 2004 

UIC Department of Education 
1040 W. Harrison St., Third Floor, Room 3427 
Chicago IL 

E. Matthew Schulz: 
Map-mark Standard Setting 

In conjunction with a contract between ACT Inc., and the 
National Assessment Governing Board (NAGB), a new 
standard setting method, map-mark, has been developed 
as a possible procedure for recommending cut scores for 
the 2005 National Assessment of Educational Progress 
(NAEP) Grade 12 mathematics assessment. 
 
 Map-mark has been designed as an augmentation of the 
bookmark standard setting method with item maps and 
content domain scores.  The item map number line 
represents the relative difficulty of test items and the 
location of cut scores.  Student performance data is 
further organized into content domains covering a wide 
range of difficulty. Tables and plots show expected 
percentage correct scores on domains as a function of 
achievement.  Panelists recommend cut scores directly in 
terms of scores on the achievement scale.   
 
The map-mark procedure was implemented and modified 
through a series of two field trials of 10 panelists each, 
one study involving 20 panelists, and a pilot study 
involving 20 panelists for each of two methods: map-
mark and an Angoff-based, item-rating procedure similar 
to the one used to set standards on the 1998 NAEP Civics 
Assessment. This presentation will describe the map-mark 
standard setting method and present results from the 
series of studies described above.  Results will address the 
reliability of the method and the comparability of results 
to past cut scores (produced in 1992 using an Angoff-
based procedure) and to cut scores set concurrently using 
an Angoff-based procedure. 

http://www.jampress.org
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. Book: Constructing Measures: An Item Response Modeling Approach 
Mark Wilson, (Lawrence Erlbaum Associates, 2004) www.erlbaum.com

Part I: A Constructive Approach to Measurement. 

Part II: The Four Building Blocks. Construct Maps. The 
Items Design. The Outcome Space. The Measurement 
Model.  

Part III: Quality Control Methods. Choosing and 
Evaluating a Measurement Model. Reliability. Validity.  

Part IV: A Beginning Rather Than a Conclusion. Next 
Steps in Measuring. The Cases Archive. GradeMap CD.  

Publisher’s description: Constructing Measures 
introduces a way to understand the advantages and 
disadvantages of measurement instruments, how to use 
such instruments, and how to apply these methods to 
develop new instruments and/or adapt old ones. The 
author believes that the best way to learn is by doing. It is 
therefore recommended that the reader review the book 
while in the process of actually constructing an 
instrument.  
 
The book is organized around the steps taken while 
constructing an instrument. It opens with a summary of 
the constructive steps involved. Each step is then 
expanded on in the next four chapters. These chapters 
develop the “building blocks” that make up an 
instrument--the construct map, the design plan for the 
items, the outcome space, and the statistical measurement 
model. The next three chapters focus on quality control. 
They rely heavily on the calibrated construct map and 
review how to check if scores are operating consistently 
and how to evaluate the reliability and validity evidence. 
The book introduces a variety of item formats, including 
multiple-choice, open-ended, and performance items; 
projects; portfolios; Likert and Guttman items; behavioral 
observations; and interview protocols.  
 
Each chapter includes several features to help the reader: 
a chapter overview provides the key concepts, related 
resources provide details for further investigation of 
certain topics, and exercises and activities provide an 
opportunity to apply the chapter’s concepts. Some 
chapters feature appendices that describe parts of the 
instrument development process in more detail, numerical 

manipulations used in the text, and/or data results of 
computer analyses. A variety of examples from the 
behavioral and social sciences and education, including 
achievement and performance testing; attitude measures; 
health measures, such as quality of life, and general 
sociological scales demonstrate the application of the 
material.  
 
An accompanying CD features: “GradeMap” software 
with control files, output, and a data set to allow readers 
to compute all of the text’s exercises and examples, and 
create and explore new analyses; and Case archives based 
on the book’s examples so the reader can work through 
the entire development of an instrument and gain a greater 
understanding of the ways the approach varies depending 
on the circumstances.  
 
Constructing Measures is intended to serve as an 
advanced text or supplement in courses on item, test, or 
instrument development, measurement, item response 
theory, or Rasch analysis taught in a variety of 
departments, including education and psychology. The 
book also appeals to those who develop instruments, 
including industrial/organizational, educational, and 
school psychologists, health outcomes researchers, 
program evaluators, and sociological measurers. 
Knowledge of basic descriptive statistics and elementary 
regression is recommended. (Price: $29.95 and up) 

 
Successful equivalence of language versions. 

Hernández L. et al.  (2000) Development and Validation 
of the “Satisfaction with Pharmacist” Scale. 

Pharmacotherapy 20(7): 837-843, 2000

Mark Wilson’s Development Cycle 

http://www.erlbaum.com

