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Bernoulli, Fisher, Shannon and Rasch
Jakob Bernoulli (1654-1705) wrote the founding treatise 

on mathematical probability, Ars Conjectandi, published 

posthumously in 1713. This discusses binomial trials, 

known to us as dichotomous items.  

Bernoulli explains that, if the probability of passing a 

dichotomous item is p, this is also the expected value of 

the trial when a success is scored 1 and a failure 0. After n 

identical trials, we expect to have n*p successes and n*(1-

p) failures.  The sum-of-squares of these around their 

expectation, p, is n*p*(1-p)^2 for the successes and n*(1-

p)*(0-p)^2 for the failures. Thus total sum-of-squares 

=  n*p*(1-p)^2 + n*(1-p)*(0-p)^2  =  n*p*(1-p) 

so the sum-of-squares for a single trial, its Bernoulli 

variance, is n*p*(1-p)/n = p*(1-p).  

The curve of Bernoulli variance against probability of 

success is plotted here in Figure 1. 

 
Figure 1. Bernoulli variance of one binomial trial. 

The reciprocal of this curve I = 1 / (p * (1-p) ) is Ronald 

Fisher’s (1925) “statistical information” function for a 

binomial response, shown in Figure 2. Fisher defined 

statistical “information” to be the “intrinsic accuracy of 

the error curve”. The square-root of the Fisher 

Information is the standard error of the Rasch measure. 

Suppose that the probability is a function of a variable, x, 

so that p = p(x). This function has the property that it is 

the accumulation (integral) of the Bernoulli variance 

(indicated by the red area in Figure 1). Then, since the 

variance is always positive, p(x) always increases as x 

increases. p(x) increases most rapidly with x when the 

Bernoulli variance is at its maximum where p=0.5 and 

p(x) =0.25. What is the function?  It must satisfy the 

integration: 

 
Figure 2. Fisher Information in one binomial trial. 

∫ (p(x)*(1-p(x)) dx = p(x) 

or, written as a differential equation, 

dp(x) / dx = p(x)*(1-p(x)) 

for which the solution is 

p(x) = exp(x) / (1+exp(x)) 

This is the logistic ogive of the Rasch model, with x being 

the difference between the person ability and the item 

difficulty for a dichotomous item. So p(x), the Rasch 

logistic ogive, has the property that its rate of change, its 

slope, is the Bernoulli variance, the inverse of the Fisher 

information. 

 
Figure 3. Rasch logistic ogive and Bernoulli variance. 
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Figure 3 shows the logistic ogive and the Bernoulli 

variance of Figure 1, now redrawn in terms of the 

independent variable x, which we can interpret as the 

Rasch measure-difference. It can be seen that the slope of 

the logistic ogive curve is given by the variance curve, 

and that the accumulation of the variance curve is the 

logistic ogive. 

 

When we re-express the Rasch logistic ogive in terms of 

p, then we have the log-odds form of the Rasch 

dichotomous model: 

x = log (p / (1-p)) 

 
Figure 4. Reoriented Rasch logistic ogive. 

Redrawing Figure 3 in terms of p on the x-axis, and -x on 

the y-axis, we have Figure 4, an ogive with the vertical 

orientation originally used by Francis Galton (1875), 

except that he had the tall men stand on the right side, not 

the left. The area under this curve (shown in red) is an 

indication of the entropy in the curve. It can be expressed 

by H where  

H = ∫ (-x)dp = - (p*log(p) + (1-p)*log(1-p)) 

This is equivalent to Claude Shannon’s (1948) “binary 

entropy function” which he identifies as related to the 

communication information in a binary observation, and 

also to the entropy function in Boltzmann’s (1872) 

statistical mechanics. Shannon expressed his function in 

terms of log2(p), which is 1.44 * loge(p). Shannon’s 

information function is plotted here in Figure 5. Its 

maximum value is 1.0.  

 
Figure 5. Shannon information and the Rasch ogive. 

The Rasch ogive is seen to tie together neatly Fisher 

information and Shannon information. In the literature, 

these are presented as contradictory formulations. An 

example is “... a theory based upon Fisher information 

[may be] less powerful than one based on Shannon 

information” (Wikipedia, art. “Physical Information”). In 

fact, Fisher Information and Shannon Information are 

different ways of saying the same thing. 

John Michael Linacre 

Shannon, C. E. (1948). A mathematical theory of 

communication (parts I and II). Bell System Technical 

Journal, XXVII:379-423. 

Boltzmann L. (1872) Weitere Studien über das 

Wärmegleichgewicht unter Gasmolekülen, Wiener 

Berichte, 66: 275–370 (“Further studies on heat 

equilibrium among gas molecules”) 

Fisher, R. A. (1925). Theory of statistical estimation, 

Proc. Camb. Phil. Soc., 22: 700-725. 

Galton, F. (1875) Statistics by intercomparison, with 

remarks on the law of frequency of error. Philosophical 

Magazine, 4th series, 49: 33–46.

UK Rasch Users' Group 

The Cambridge Assessment Network hosted the 2nd 

meeting of the UK Rasch Users' Group at Hughes Hall in 

Cambridge, England on Monday 5th February 2007.  The 

purpose of the group is to provide a forum for Rasch 

practitioners in the UK working in different fields to get 

together to share ideas and present research. 

The 38 delegates heard presentations covering a wide 

range of practical applications of Rasch measurement - 

from investigating misfit in classroom mathematics tests 

to measuring rehabilitation outcomes in brain-injured 

patients.  During the lunch break there were 

demonstrations of developments from Cambridge ESOL 

in item banking, item analysis and computer adaptive 

testing, and of Cambridge Assessment's TSA (Thinking 

Skills Assessment) online test for university admissions. 

The program for the day, and the abstracts and slides for 

the presentations will soon be available at 

www.assessnet.org.uk/mod/resource/view.php?id=142 

Tom Bramley  

Assistant Director, Research Division  

Assessment Research & Development  

Cambridge Assessment  

1 Regent Street, Cambridge, CB2 1GG  

Direct Dial: 01223 553985  

www.cambridgeassessment.org.uk 



Rasch Measurement Transactions 20:3 Winter 2006  1065 

Rasch: Too Complicated or Too Simple?
A colleague writes: 

 “I've proposed a Rasch analysis, not a Classical analysis, 

but people here are not familiar with it and they are not 

very open to other perspectives than Classical Test 

Theory. I've try to explain to them all the advantages of 

Rasch, but they said: “This is to complicated and people 

won't understand it. We need a Classical Analysis.” But 

on another project, people were very critical about Rasch 

and proposed instead a 3-PL model.” 

Comment: Yes, familiar methods are difficult to unseat. 

The astrolabe was still being used 150 years after Isaac 

Newton demonstrated better methods of locating the 

planets. Classical methods usually survive until a situation 

arises they can't deal with, such as missing data, adaptive 

tests, maintaining criterion-based pass-fail points, test-

equating with small samples ... 

Advocating the 3-PL model means that they expect their 

students to guess answers at random - so that the student 

measures will have a chaotic component,  lowering the 

predictive validity of the test. They also expect their items 

to differ widely in discrimination - which means they 

expect their item writers to write deficient items, lowering 

the construct validity of the test. 

The 3-P logistic model was designed to model messy 

data. According to Martha Stocking, an advocate of 3-PL, 

“Building statistical models is just like this. You take a 

real situation with real data, messy as this is, and build a 

model that works to explain the behavior of real data.” 

New York Times, 2-10-2000. 

Instead of designing a descriptive model, such as 3-PL, to 

explain messy data, Georg Rasch designed a model that 

demands useful data and points out where the data is 

messy. Messy data produces messy findings. Useful data 

produces useful findings. But most statisticians believe 

that the data, however messy, always tells the truth. The 

problem is that the messy data's “truth” may not be the 

truth that we need for decision-making. 

MetaMetrics Workshop Series on Psychometrics 

An Introduction to Rasch Measurement: 

Theory and Application 

by David Andrich 

March 26-29, 2007 - Monday-Friday 

Durham , North Carolina 

You are invited to a free four-day workshop 

introducing the theory and applications of Rasch 

measurement and providing hands-on experience with 

RUMM2020 data analysis software. The workshop will 

combine lecture, question-and-answer and small-group 

instruction. You will have opportunities to analyze your 

own data.  

We will study principles of the Rasch models from the 

perspective of the Item Characteristic Curve and 

Differential Item Functioning. RUMM2020 will be used 

to demonstrate concepts and teach you how to analyze 

data in a flexible way. Case studies will be used that bring 

together the professional understanding of the variable of 

assessment, item construction, and the use of statistical 

indices in determining the validity of item sets.   

Instructional material will apply Rasch models to 

dichotomous (multiple choice) and polytomous (rating 

scale and partial credit) data. Familiarity with Microsoft 

Excel, basic statistics and the Windows platform is a plus. 

More information and registration details at: 
http://www.lexile.com/DesktopDefault.aspx?view=re&tabindex=3&tabid=92 

Rasch Workshop 

Hands-on Introduction to 

 IRT/Rasch Measurement Using Winsteps 

by Ken Conrad & Barth Riley 

March 26-27, 2007 - Monday-Tuesday 
University of Illinois - Chicago 

Social scientists have great need for the development of 

valid measures, e.g., of the quantity and quality of health 

services and of the outcomes of those services. Many 

researchers are frustrated when existing instruments are 

not well tailored to the task, since they then cannot expect 

sensitive, accurate, or valid findings. This workshop 

presents the theory and practice of classical test theory, 

the traditional approach. It then provides an overview of 

modern measurement as practiced using item response 

theory with a focus on Rasch measurement. Rasch 

analysis provides the social sciences with the kind of 

measurement that characterizes the natural sciences. Since 

Rasch focuses on the items and the persons rather than the 

test score, the synthesis of quantitative analysis with 

qualitative issues is experienced in a way that is rare in 

social science. Ultimately, Rasch measurement can 

facilitate more efficient, reliable, and valid assessment 

while improving privacy and convenience to users. The 

Workshop is useful for anyone who wants to understand 

the role of modern measurement in research. 

Attendees will learn hands-on: 

* Differences between Classical Test Theory and Rasch  

* Why and how Rasch creates linear, interval measures 

* The inner workings of the Rasch model 

* How to run Winsteps analyses 

* Interpretation of Rasch/Winsteps output 

You need a recent Winsteps running on a lap-top 

computer. We provide Winsteps free, but time-limited. 

For more details and registration: 

www.winsteps.com/workshop.htm 
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The Consequences for Measurement of Mindsets
Dweck’s (2000, 2006) social-cognitive model of 

motivation, personality and development leads to the 

realization that individuals’ behaviors and beliefs are 

often influenced by implicit theories concerning the 

malleability of intelligence. For example, implicit self-

theories about intelligence have been shown to influence  

• individuals’ responses to achievement challenges 

(Dweck & Leggett, 1988; Henderson & Dweck, 1990),  

• their conceptions of morality as duty-based 

versus human-rights based, and their overall assumptions 

about the kind of person someone is and how they will 

behave (Chiu, Dweck, Tong, & Fu, 1997),  

• differences in degree of social stereo-typing 

(Levy, Stroessner, & Dweck, 1998), and  

• individuals’ predictions of the future behavior of 

another individual (Chiu, Hong, & Dweck, 1997).  

In the course of conducting research aimed at the 

quantification of Dweck’s constructs, it became apparent 

that the different ways self-theories influence responses to 

achievement challenges suggests an illuminating approach 

to understanding the history of measurement in 

psychology. 

The implicit self-theory research demonstrates that an 

individual usually responds to life experiences through the 

unconscious lens of one of two theories about 

intelligence, fixed or malleable (Dweck, 2000, 2006). 

Dweck and colleagues (2000, 2006) carefully articulate 

that, though the fixed “Entity” and malleable “Growth” 

mindsets present different ways of approaching a variety 

of experiences, neither is wrong or right—they are just 

different in their consequences.  

The fixed theory sees intelligence as a quantity received 

as a function of biologic inheritance that cannot be 

enlarged by experience. In other words, a person’s ability 

is set in stone at birth. Although one may learn new 

things, the amount of available intelligence remains the 

same. The malleable theory (referred to as the “growth 

theory” here) sees intelligence as a function of experience 

and effort. A person’s ability over the course of a lifetime 

may be increased through effort and experience. One can 

increase intelligence through trial-and-error problem 

solving in the course of learning new things. Research has 

shown that holding one or the other of these theories has 

specific consequences when the individual is faced with 

an achievement challenge. 

Self-Theories of Intelligence 

Fixed theorists usually exhibit a need to protect their 

perception of the amount of intelligence they possess. 

When given a choice, fixed theorists select achievement 

challenges they perceive as not likely to threaten their 

image of themselves as successful. So, they rarely choose 

to take a risk in order to learn. Instead, they prefer to 

repeat a challenge known to be within their capacity to 

succeed. Fixed theorists center their concerns on how they 

appear as they perform; they are more likely to be 

concerned with looking smart than with entertaining the 

possibility of failure in order to learn something new.  

Growth theorists usually associate their intelligence with 

the amount of effort they invest in achievement 

challenges. The consequences of holding this theory 

means that when given a choice they more often select 

achievement challenges that offer the opportunities to 

learn something new instead of one that repeats a previous 

success. They see trial and error problem solving as a 

confirmation of intelligence. When faced with 

achievement challenges, growth theorists’ concerns center 

on matching effort with the challenge. Big challenges 

require big efforts. 

Dweck and colleagues (Dweck 2000, 2006) find 

differences in the way these two implicit self-theories 

influence individual’s explanations of, and responses, to 

failure. Fixed theorists are likely to explain failure in 

terms of external circumstances beyond their control. 

Typical comments in the face of failure might be “I’ve 

never been good at that,” or “I’m just not that smart,” or 

“That teacher is just too demanding,” blaming failure on 

their fixed amount of intelligence or the level of the 

challenge and exhibit a “helpless” response. Growth 

theorists on the other hand typically say, “Okay, so that 

way doesn’t work,” or “If I had just worked a little 

harder,” suggesting that failure could be averted by 

moving beyond what doesn’t work to calculate another 

approach predicting success as a function of effort.  

Fixed theorists are known to develop maladaptive 

behaviors when confronted with achievement challenges 

that keep them from solving problems they had previously 

thought soluble (Dweck, 2000, 2006). These maladaptive 

behaviors bear striking resemblances to the responses of 

some theorists to the problems of psychological 

measurement. 

Measurement in the Human Sciences: 

 The View from Two Mindsets 

Psychology and the human sciences faced a particularly 

salient measurement puzzle when fundamental 

measurement as defined by Campbell (1920) seemed 

impossible for these fields.   

Without fundamental measurement there could be no 

derived measurement and so, according to Campbell’s 

theory, psychology was without measurement. What is 

more, the task of locating analogues of numerical addition 

pertinent to psychological measurement appeared grim. 

(Michell, 1990) 

How might implicit self-theories of intelligence help us 

understand the ways in which these problems were 

addressed in the history of science?  In other words, 

construing the situation as an “achievement challenge,” 

how might the historical approaches taken by different 

individuals to the problem of psychological measurement 
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be interpreted in light of the implicit self-theory 

constructs? Let’s look at two such individuals. 

S. S. Stevens: The Road Most Traveled 
The problem of measurement filled many in the field of 

psychology with consternation, and none more than S. S. 

Stevens. Stevens attacked the problem and constructed the 

road most traveled by human scientists since. His 

approach was to redefine measurement operationally.  

In an autobiographical article Stevens wrote, “My own 

central problem throughout the 1930’s was measurement, 

because the quantification of the sensory attributes 

seemed impossible unless the nature of measurement 

could be properly understood” (1974, p. 409). The theory 

of measurement that he came to propose owed much to 

Campbell’s, but it also owed a lot to what was then a 

fledgling philosophical movement, operationalism. 

(Michell, 1990, p. 15) 

In drawing from operationalism, Stevens’ response to the 

measurement challenge exhibited the characteristics of a 

“fixed theory of intelligence”—a fixed mindset.  

Remember, the fixed mindset looks for a way to appear 

smart or rigorous with the least risk. Failure would be a 

flagrant denial of innate intelligence, or, in this case, a 

flagrant denial of the value of a putative science. So, 

Stevens’ approach to the achievement challenge was to 

retreat to a challenge posing a diluted risk of failure.  

Thus, in his 1935 article, “The operational definition of 

psychological terms,” in the journal, Psychological 

Review, Stevens set the stage for success in measuring by 

establishing new guidelines. His proposal set forth a 

program that said as long as you define your operations 

and keep true to those definitions then you have a 

“measurement.” Fundamental measurement as defined by 

Campbell was abandoned due to circumstances beyond 

the control of psychologists, in favor of a solution that 

guarantees the appearance of success.  

As in the case of Dweck’s mindset research, the 

consequence of making the choice in favor of the 

immediately solvable problem unnecessarily limits the 

learning boundaries of those involved. This is seen in the 

way research that reports results defined through Stevens’ 

model consistently restricts itself to descriptive statistics 

with context specific applications. The consequences of 

this mindset in human science research means that the 

utility of reported findings is restricted to instrument- and 

sample-specific results. The alternative, although a road 

less traveled, yields quite different results. 

G. Rasch: The Road Less Traveled 

Rasch (1960) was also concerned with the problem of 

measurement in the human sciences, particularly as it 

affected the measurement of individuals. In the preface to 

his Probabilistic Models for Some Intelligence and 

Attainment Tests, he presents the problem as one of 

requiring models that demand that the result of an 

encounter between an instrument and an individual 

depend only on the individual’s ability and the 

instrument’s difficulty.  

Symmetrically, it ought to be possible to compare stimuli 

belonging to the same class – “measuring the same thing” 

– independent of which particular individuals within a 

class considered were instrumental for comparison. 

This is a huge challenge, but once the problem has been 

formulated it does seem possible to meet it. (Rasch, 1960, 

p. xx). In other words, he advocated for models that 

maintained the requirements of fundamental 

measurement, that the “calibration of the measuring 

Rasch-related Coming Events: 2007  

Feb. 12-16, 2007, Mon.-Fri. Item Response Modeling 

With ConQuest (Ray Adams & Margaret Wu), Australia 

www.edfac.unimelb.edu.au 

Feb. 16 - Mar. 16, 2007, Fri.-Fri. Practical Rasch 

Measurement (Winsteps) online course (Mike Linacre) 

www.statistics.com/courses/rasch (Sorry! Fully booked.) 

March 2007 - Dec 2008 3-day Rasch courses, Leeds, UK 

http://home.btconnect.com/Psylab_at_Leeds/ 

March 26-27, 2007, Mon.-Tues. Introduction to 

IRT/Rasch Measurement Using Winsteps (Conrad & 

Bezruczko), Chicago www.winsteps.com/workshop.htm 

March 26-29, 2007, Mon.-Thurs. MetaMetrics Workshop 

Series in Psychometrics – Introduction to Rasch 

Measurement: Theory and Application (David Andrich) 

(free!), Durham, North Carolina www.lexile.com   

Apr. 7-8, 2007, Sat.-Sun. Introduction to Rasch 

Measurement: Theory and Applications, Chicago IL 

(Smith & Smith) www.jampress.org 

Apr. 9-13, 2007, Mon.-Fri. AERA Annual Meeting, 

Chicago www.aera.net 

May 4 - June 1, 2007, Fri.-Fri. Facets online course 

 (Mike Linacre) www.statistics.com/courses/facets 

June 21 - July 1, 2007, Thur.-Sun. 3rd Summer School 

Measurement of Latent Variables (Rasch), Russia  

June 22, 2007, Fri. Workshop: Theory and Practice of 

Measurement of Latent Variables, Russia 

www.rasch.org/russia.pdf 

July 16, 2007, Mon. ConQuest Workshop 

 (Margaret Wu), Taiwan  

July 16, 2007, Mon. Winsteps Workshop 

 (Mike Linacre), Taiwan  

July 17-19, 2007, Tues.-Thurs. 

Pacific Rim Measurement Symposium PROMS 

Taiwan 

 http://210.60.0.152/PROMS2007TAIWAN/ 

Aug. 3 - Aug. 31, 2007, Fri.-Fri. Practical Rasch 

Measurement with Winsteps online course (Mike Linacre) 

www.statistics.com/courses/rasch  
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instruments must be independent of those objects that 

happen to be used for calibration. Second, the 

measurement of objects must be independent of the 

instrument that happens to be used for measuring,” 

(Wright and Stone, 1979, p. xii). And it is apparent that 

Rasch did so with the full knowledge of the scope of the 

challenge.  

Embracing the challenge, like a growth mindset theorist, 

he saw the solution as one of effort, a trial and error 

endeavor. Unlike Stevens, Rasch engaged the challenge at 

its heart, rather than change the nature of the problem to 

something less formidable. Rasch’s effort produced a set 

of probabilistic models making human science variables 

amenable to fundamental measurement requirements. 

Results can be reported in invariant units creating a 

common language among interested parties. This releases 

results from context specific applications and is crucial to 

meaningful, linked conversations among various 

interested parties, such as teachers, students, parents, 

administrators, researchers, accreditors, etc.  

In this context, the historian of science, Bruno Latour, 

remarks, “Every time you hear about a successful 

application of science, look for the progressive extension 

of a network” (Latour, 1987, p. 249). Choosing methods 

capable of supporting expanding networks of people 

communicating in common languages about the same 

things breaks the silence of non-connected networks 

enforced by analyses that contextually imprison research 

results. 

When a common language is mobilized within a network 

of shared signification, with its terms and symbols 

everywhere recognized and accepted by those trained in 

reading them, meaningful communication is achieved, 

shared understandings and histories are more easily 

accumulated, and collective productivity is markedly 

enhanced. (Fisher, 2003, p. 801) 

Those following Rasch’s model (and other models like 

his) open learning boundaries. They extend what is 

possible for communities or networks of human science 

researchers to accomplish. They participate in the 

fascinating power of shared knowledge by way of 

preferring effort over retreat—a road too long less 

traveled. 

Sharon G. Solloway 
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Rasch Online Courses 

Winsteps and Facets 

by Mike Linacre 

May 4 - June 1, 2007, Fri.-Fri. Facets online course 

 (Mike Linacre) www.statistics.com/courses/rasch 

Aug. 3 - Aug. 31, 2007, Fri.-Fri. Practical Rasch 

Measurement with Winsteps online course 

 (Mike Linacre) www.statistics.com/courses/facets 

Feb. 16 - Mar. 16, 2007, Fri.-Fri. Practical Rasch 

Measurement with Winsteps online course (Mike Linacre) 

www.statistics.com/courses/rasch (Sorry! Fully booked.) 

Each Course consists of 4 weeks of detailed step-by-step 

downloadable tutorials on Rasch theory and software 

operation. There are Discussion Boards for Q-&-A and 

group interaction. Free time-limited versions of the 

software are provided. These Courses are the next-best-

thing to in-person Workshops. You work at your own 

pace in your own location on your own schedule. Give 

yourself at least 10 hours per week to fully benefit. 
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ACSPRI Conference, Sydney, Australia, December 2006 
Australian Consortium for Social and Political Research Incorporated 

Objective Measurement in the Social Sciences Stream 
Coordinator: Andrew Stephanou

The Polytomous Unidimensional Rasch Model: 

Understanding its Response Structure and Process, David 

Andrich, School of Education, Murdoch University  

Psychometric Properties of the PsychoSomatic Problems 

Scale – an Examination Using the Rasch Model, Curt 

Hagquist, Karlstad University, Karlstad, Sweden  

Predicting Fitness to Drive in People with Physical and/or 

Cognitive Impairment Using a Clinical Test, Lynn Kay, 

Anita Bundy & Lindy M. Clemson, School of Occupation 

and Leisure Sciences, Faculty of Health Sciences, The 

University of Sydney  

Measuring Task Embedded Information Processing 

Capacity During Occupational Performance: an 

Application of Rasch Measurement, Melissa Nott & C. 

Chapparo, School of Occupation and Leisure Sciences, 

Faculty of Health Sciences, The University of Sydney  

Does Attitudinal Ambivalence Necessitate the Bivariate 

Measurement of Attitudes? An Application of the Quasi-

Rasch Hyperbolic Cosine Model, Joshua McGrane, 

School of Psychology, The University of Sydney  

Developing a Diagnostic Assessment Instrument for 

Identifying Students’ Understanding of Fraction 

Equivalence, Monica Wong, David Evans & Judy 

Anderson, The University of Sydney  

The Motivation of Stereotypic and Repetitive Behaviour: 

Examination of Construct Validity of the Motivation 

Assessment Scale,  Annette V. Joosten and Anita C. 

Bundy, School of Occupation and Leisure Sciences, 

Faculty of Health Sciences, The University of Sydney  

Refining an Instrumental Activities Daily Living Measure 

by Determining Category Functioning, Lindy Clemson, 

Anita Bundy, Lynnette Kay & Tim Luckett, Faculty of 

Health Sciences, The University of Sydney  

Maintaining a Common Unit in Social Measurement, 

Steve Humphry, University of Western Australia  

PISA – The Programme for International Student 

Assessment – An Overview, Ross Turner, Australian 

Council for Educational Research  

Using Differential Item Functioning to Enhance the 

Curriculum, Juho Looveer, NSW Department of 

Education and Training  

Development of a Numeracy Achievement Scale to 

Assess Progress from Kindergarten Through Year 6, Juho 

Looveer, Joanne Mulligan & Susan Busatto, NSW 

Department of Education and Training; Macquarie 

University  

Changes in Students' Mathematics Achievement in 

Australian Lower Secondary Schools Over Time, Tilahun 

Afrassa, SA Department of Education and Children’s 

Services 

The Impact of Moving Testing From August to May on 

Students’ Achievement in Numeracy and Literacy: a 

Rasch Analysis, Tilahun Afrassa, SA Department of 

Education and Children’s Services 

Ameliorating Culturally Based Extreme Response 

Tendencies to Attitude Items: The Use of Item Response 

Models to Explore the Alternatives, Maurice Walker, 

Australian Council for Educational Research Melbourne, 

Australia  

Using the Rasch Model in the Design of a New 

Curriculum Framework and to Moderate Teacher 

Assessments Within it, Andrew Smith, Office for 

Educational Review, Department of Education 

(Tasmania)  

Norming the Progressive Achievement Tests in 

Mathematics with the Rasch Model, Charles Darr & 

Andrew Stephanou New Zealand Council for Educational 

Research; Australian Council for Educational Research 

Abstracts and Full Papers available via 

www.acspri.org.au/conference2006//proceedings/ 

Science ... 
Science consists of two general areas: there is the act of 

measurement, which is the empirical side of science, and 

there is the development of mechanisms, which is its 

theoretical side. 

Dr. Dean Radin on "Closer to Truth", PBS, 2000  

Rasch-related Coming Events: 2008  

Jan. 7-11, 2008, Mon.-Fri. Introductory course on Rasch 

measurement (Andrich, RUMM), Australia 

www.rasch.org/i2008.htm 

Jan. 14-18, 2008, Mon.-Fri. Advanced course on Rasch 

measurement (Andrich, RUMM), Australia 

www.rasch.org/i2008.htm 

Jan. 21, 2008, Mon. One-day RUMM Workshop 

(Andrich, RUMM), Australia www.rasch.org/i2008.htm 

Jan. 22-24, 2008, Tues.-Thurs. 3rd International 

Conference on Measurement in Health, Education, 

Psychology and Marketing: Developments with Rasch 

models, Australia www.rasch.org/i2008.htm 

March 24-28, 2008, Mon.-Fri. AERA Annual Meeting 

 New York www.aera.net 
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An Adjustment for Sample Size in DIF Analysis
A statistical test for differential item functioning (DIF, 

item bias) between two groups, 1 and 2, is: 

               [1] 

where di(1) - di(2) is the shift of the item i measures 

between groups 1 and 2; sei(1) and sei(2) are the standard 

errors of the item measures. A shift greater than 0.5 logits 

is considered evidence of DIF, and a t value of 1.96 or 

more is statistically significant (p<.05) for large samples 

(Draba, 1977).  The ETS DIF Classification is similar, but 

more elaborate. Draba’s rule approximates the ETS 

Category B rule. 

  

ETS DIF 

Category 

DIF Size 

(Logits) 
DIF Significance 

C = moderate to 

large 

|DIF| >= 

1.5 / 2.35 = 

0.64 

p( |DIF| > 1/2.35 = 

0.43) > .05 

B = slight to 

moderate 

|DIF| >=  

1/2.35 = 0.43 
p( |DIF| > 0) > .05 

A = negligible - - 

C-, B- = DIF against focal group 

C+, B+ = DIF against reference group 

Zwick, R., Thayer, D.T., Lewis, C. (1999) An Empirical 

Bayes Approach  to Mantel-Haenszel DIF Analysis. 

Journal of Educational Measurement, 36, 1, 1-28 

Note: ETS use Delta units. 1 logit = 2.35 Delta units. 

 

Formula [1] has been employed in a 21 items test, 

answered by 21820 persons, and the purpose is to detect 

gender bias. Standard errors are deliberately shown with 4 

decimal places. It appears that even for small shift values, 

20 of the 21 items produce significant ti(12) values, 

indicating that practically all the items show gender bias 

according to the significance rule alone. The same 

analysis was developed with sub-samples of 250 women 

and 250 men, now only 5 of the 21 items produce 

significant t values and so it is a minority of items that 

show gender bias. The main reason of the difference in 

results is that the standard errors of the item measures 

depend on the sizes of the focus and reference groups. 

But, according to Clauser & Hambleton (1994), “DIF 

analysis should be based on the largest sample available”, 

so their guideline implies that even the smallest difference 

could be significant, nullifying the ETS Significance rule. 

It can be seen that the conventional t values, ti(12), differ 

considerably across calculations. The measure estimates 

for the large sample are more precise than for the sub-

sample, so the large sample produces smaller standard 

errors of measurement and higher t values. This suggests 

that a DIF Significance test is needed that is robust 

against sample size. Here is one based on computationally 

normalizing the empirical sample size of N to a standard 

sample size of 100: 

10
..

100

..
..

N
ES

NES
ES normalized ==

    [2] 

The reference value of 100 has been chosen because it is 

not only a simple number to remember, but also because 

the mean S.E.normalized for item p-

values between 0.001 and 0.999 is 

0.965, i.e., close to 1, and, as can 

be seen in Fig. 1, the minimum 

possible value of S.E.normalized is 0.2. 

These values are of the same order 

of magnitude as the t values 

expected according to formula [1].  

In addition, t values bigger than 

1.96 may occur for shifts of 0.55 

(Fig. 2), which closely corresponds 

to the half logit rule, so the 

conclusions of the DIF size and 

DIF significance rules are in 

accord. For a closer match with the 

ETS criteria for DIF Category B, 

instead of 100, normalize with 

100*(0.43/0.55)^2 ≈ 60. 

 

Figure 1. Values of S.E.normalized for different 

 item p-values. 

( )
( ) ( )

( ) ( )
96.1

21

21
12

22

>

+

−
=

ii

ii

i

sese

dd
t

 Men=11320 Women=10500 Men Women 

Item Measure S.E. Measure S.E. 
Shift ti(12) 

S.E. normalized 
ti(12)n 

1 -1.4830 0.0229 -1.5731 0.0233 -0.09 -2.76 0.24 0.26 -0.254 

5 -0.8466 0.0207 -1.4895 0.0209 -0.64 -21.86 0.22 0.23 -2.017 

9 -0.6947 0.0223 -0.0767 0.0214 0.62 20.00 0.24 0.24 1.847 

13 0.3486 0.0210 0.1849 0.0197 -0.16 -5.69 0.22 0.22 -0.525 

 

 Men=250 Women=250 Men Women 

Item Measure S.E. Measure S.E. 
Shift ti(12) 

S.E. normalized 
ti(12)n 

1 -1.6269 0.1714 -1.9528 0.1966 -0.33 -1.25 0.27 0.31 -0.790 

5 -0.6214 0.1436 -1.3438 0.1652 -0.72 -3.30 0.23 0.26 -2.087 

9 -0.6214 0.1572 0.0047 0.1479 0.63 2.90 0.25 0.23 1.835 

13 0.2751 0.1399 0.3601 0.1372 0.09 0.43 0.22 0.22 0.274 

Table 1 (left-hand columns) show some measures and S.E. of items 

 for the complete sample and for a sub-sample. 
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Figure 2 shows that, independently of the S.E., shifts 

below 0.55 imply that no item bias will be present and 

that shifts above 1.3 imply item bias (both are close to the 

0.5 logit rule and the 1.5 logit rule). Therefore bias 

depends on S.E.normalized (i.e., item-sample targeting) 

only for shifts between 0.55 and 1.3 logits. 

The right-hand columns of Table 1 show the normalized 

standard errors and t-tests. It can be seen that the size of 

S.E.normalized is comparable between the complete 

sample and the sub-sample and that the t values,  ti(12)n, 

are similar. The DIF sizes and significances are now in 

closer accord. It can now be seen that is it meaningful to 

apply both the size and significance criteria in classifying 

items for DIF. 

Agustín Tristán 

Clauser B.E. & Hambleton, R.K. (1994) Review of 

Differential Item Functioning, P. W. Holland, H. Wainer. 

Journal of Educational Measurement, 31, 1, 88-92.  

Draba R.E. (1977) The identification and interpretation of 

item bias. Educational Statistics Laboratory. Memo 25. 

University of Chicago. www.rasch.org/memo25.htm 

Statistical Significance vs. Substantive Boundaries 

“The major scientific disadvantage of [significance testing 

and confidence intervals] is that their significance is 

merely an inference derived from principles of 

mathematical probability, not an evaluation of substantive 

importance for the big or small magnitude of the observed 

distinction. ... They offer no guidance for the basic 

quantitative scientific appraisals that depend on purely 

descriptive rather than inferential boundaries. ... The latter 

evaluation has not received adequate attention during the 

emphasis on probabilistic decisions; and careful principles 

have not been developed either for the substantive 

reasoning, or for setting appropriate boundaries, for big or 

small. After a century of significance inferred exclusively 

from probabilities, a basic scientific challenge is to 

develop methods for deciding what is substantively 

impressive or trivial.”  

Feinstein, A. R. (1998). P-values and confidence 

intervals: Two sides of the same unsatisfactory coin. 

Journal of Clinical Epidemiology, 51(4), 355-60. 

 Courtesy of William P. Fisher 

Psychological Measurement Impossible! 
 “Measurement can belong, therefore, only to that which 

is objective and spacial, and the psycho-physical quanta 

must stand for the physiological elements of our reactions, 

expressed in personal equations.” 

George Herbert Mead. "The Problem of Psychological 

Measurement", Proc. of the American Psychological 

Association, New York: MacMillan & Co. (1894): 22-23. 

Rasch Workshop 

An Introduction to Rasch Measurement: 

 Theory and Applications 

by Everett V. Smith Jr. & Richard M. Smith 

April 7-8, 2007 - Saturday-Sunday 

immediately before AERA 

University of Illinois - Chicago 

This training session on the theory and applications of 

Rasch measurement will provide participants with the 

necessary tools to become effective consumers of research 

employing Rasch measurement and the skills necessary to 

solve practical measurement problems. Instructional 

material will be based on four Rasch measurement 

models: dichotomous, rating scale, partial credit, and 

many-facet data. Participants will have the opportunity to 

use current Rasch software. 

The format will consist of eight units: 

· Introduction to Rasch Measurement 

· Item and Person Calibration 

· Dichotomous and Polytomous Data 

· Performance and Judged Data 

· Applications of Rasch Measurement I and II 

· Examples of Rasch Analyses 

· Analysis of Participants’ Data. 

The material covered is these units is an overview of 

material that would normally be covered in approximately 

three graduate level measurement courses. Registration 

includes the full 2-day workshop, a continental breakfast 

each morning, over 550 pages of handouts and tutorial 

material, a copy of Introduction to Rasch Measurement (a 

698 page book) and a one-year subscription to the Journal 

of Applied Measurement.  

For more details and registration: www.jampress.org 

under Rasch Measurement Workshops 

 

Figure 2. Theoretical t values as a function of shift 

 and S.E. normalized 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1072                           Rasch Measurement Transactions 20:3 Winter 2006 

Survey Design Recommendations
The field of survey-based measurement is maturing. 

Calibrated survey tools are proliferating rapidly in a 

number of fields. Much of this work stops with the 

calibration of an instrument that was not designed with 

the intention to produce invariant measures based in 

sufficient statistics. The description of data-based 

calibrations and measures is often the only goal of 

publications reporting this work. That is, little or no 

attention is typically accorded a theory of the construct 

measured. This is so, even though it has long since been 

recognized that “there is nothing so practical as a good 

theory” (Lewin, 1951, p. 169), and even though the 

practicality of theory has been made glaringly evident in 

the success of the Lexile Framework for Reading 

(Stenner, Burdick, Sanford, & Burdick, 2006).  

Accordingly, even when instruments are precisely 

calibrated, survey content still tends to dominate the 

reporting of the results and the implicit definition of the 

construct. But is it not likely, in this scenario, that 

supposedly different constructs measured in supposedly 

different units might actually be one and the same? Is not 

the real proof of understanding a capacity to construct 

parallel instruments from theory in a way that results in 

equivalent measures across samples? Would not a focus 

on experimental tests like this work to spur consensus on 

what is measurable and on what works to change 

measures in desired directions? 

To advance survey-based science in this direction, item 

writers and survey data analysts should follow nineteen 

basic rules of thumb to create surveys that  

·        are likely to provide data of a quality high enough to 

meet the requirements for measurement specified in a 

probabilistic conjoint measurement (PCM) model 

(Suppes, Krantz, Luce & Tversky, 1989),  

·        implement the results of the PCM tests of the 

quantitative hypothesis in survey and report layouts, 

making it possible to read interpretable quantities off the 

instrument at the point of use with no need for further 

computer analysis (Masters, Adams & Lokan, 1994); and  

·        are joined with other surveys measuring the same 

variable in a metrology network that ensures continued 

equating (Masters, 1985) with a single, reference standard 

metric (Fisher, 1997). 

An initial experiment in this direction has been sponsored 

under the auspices of the National Center for Special 

Education Accountability Monitoring (NCSEAM). With 

the November, 2004, reauthorization of the Individuals 

with Disabilities Education Act (IDEA), states are 

required to report parents and families perceptions of the 

quality of the services received by them and their 

children. NCSEAM designed and piloted surveys in a 

research study intended to provide states with 

scientifically defensible measures. The research began 

with intensive qualitative research into the constructs to 

be measured, involving literature reviews, focus sessions 

with stakeholders in several states, and Rasch analyses of 

survey data from several other states. This work paved the 

way for the intentional conceptualization of theories 

pertaining to several distinct constructs. A pilot study 

employing these surveys was itself designed so as to 

demonstrate as conclusively as possible the invariant 

comparability of the measures across independent 

samples of item. The success of this research has 

culminated in the practical application of the NCSEAM 

surveys to the new reporting requirement by a number of 

states, and with the emergence of a small community of 

special education and early intervention researchers, 

administrators, parents, and advocates who are learning 

how to use these tools to assess, compare, and improve 

the quality of programs. 

For those wishing to emulate this program, the following 

recommendations are offered: 

1. Make sure all items are expressed in simple, 

straightforward language. Use common words with 

meanings that are as unambiguous as possible. 

2. Restrict each item to one idea. This means avoiding 

conjunctions (and, but, or), synonyms, and dependent 

clauses. A conjunction indicates the presence of at least 

two ideas in the item. Having two or more ideas in an 

item is unacceptable because there is no way to tell from 

the data which single idea or combination of ideas the 

respondent was dealing with. If two synonymous words 

really mean the same thing, only one of them is needed. If 

the separate words are both valuable enough to include, 

they need to be expressed in separate items. Dependent 

(if, then) clauses require the respondent to think 

conditionally or contingently, adding an additional and 

usually unrecoverable layer of interpretation behind the 

responses that may muddy the data. 

3. Avoid “Not Applicable” or “No Opinion” response 

categories. It is far better to instruct respondents to skip 

irrelevant items than it is to offer them the opportunity in 

every item to seem to provide data, but without having to 

make a decision. 

4. Avoid odd numbers of response options. Middle 

categories can attract disproportionate numbers of 

responses. Like “Not Applicable” options, middle 

categories allow respondents to appear to be providing 

data, but without making a decision. If someone really 

cannot decide which side of an issue they come down on, 

it is better to let them decide on their own to skip the 

question. If the data then show that two adjacent 

categories turn out to be incapable of sustaining a 

quantitative distinction, that evidence will be in hand and 

can inform future designs. 

5. Have enough response categories. Not too few and 

not too many. Do not assume that respondents can make 

only one or two distinctions in their responses, and do not 
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simply default to the usual four response options 

(Strongly Agree, Agree, Disagree, Strongly Disagree, or 

Never, Sometimes, Often, and Always, for instance). The 

LSU HSI PFS, for example, employs a six-point rating 

scale and is intended for use in the Louisiana statewide 

public hospital system, which provides most of the 

indigent care in the state. About 75% of the respondents 

in the study reported have less than a high school 

education, but they provided consistent responses to the 

questions posed. Part of the research question raised in 

any measurement effort concerns determining the number 

of distinctions that the variable is actually capable of 

supporting, as well as determining the number of 

distinctions required for the needed comparisons. Starting 

with six (adding in Very Strongly Agree/Disagree 

categories to the ends of the continuum) or even eight 

(adding Absolutely Agree/Disagree extremes) response 

options gives added flexibility in survey design. If one or 

more categories blends with another and isn't much used, 

the categories can be combined. Research that starts with 

fewer categories, though, cannot work the other direction 

and create new distinctions. More categories have the 

added benefit of boosting measurement reliability, since, 

given the same number of items, an increase in the 

number of functioning (used) categories increases the 

number of distinctions made among those measured. 

6. Write questions that will provoke respondents to use 

all of the available rating options. This will maximize 

variation, important for obtaining high reliability. This is 

a start at conceptualizing a theory. What kinds of 

questions will be most likely to consistently provoke 

agreeable responses, no matter how agreeable a 

respondent is? Conversely, what kinds of questions will 

be most likely to consistently provoke disagreeable 

responses, no matter how agreeable a respondent is? What 

is it that makes the variable evolve in this manner, along 

the hierarchy defined by the agreeability continuum of the 

questions? Articulating these questions in advance and 

writing survey items that put an explicit theory into play 

propels measurement into higher likelihoods of obtaining 

the desired invariance. 

7. Write enough questions and have enough response 

categories to obtain an average error of measurement 

low enough to provide the needed measurement 

separation reliability, given sufficient variation. 

Reliability is a strict mathematical function of error and 

variation and ought to be more deliberately determined 

via survey design than it currently. For instance, if the 

survey is to be used to detect a very small treatment 

effect, measurement error will need to be very low 

relative to the variation, and discrimination will need to 

be focused at the point where the group differences are 

effected, if statistically significant and substantively 

meaningful results are to be obtained. On the other hand, 

a reliability of .70 will suffice to simply distinguish high 

from low measures. Given that there is as much error as 

variation when reliability is below .70, and it is thus not 

possible to distinguish two groups of measures in data this 

unreliable, there would seem to be no need for 

instruments in that range. 

8. Before administering the survey, divide the items into 

three or four groups according to their expected 

ratings. If any one group has significantly fewer items 

than the others, write more questions for it. If none of the 

questions are expected to garner very low or very high 

ratings, reconsider the importance of step 6 above. 

9. Order the items according to their expected ratings and 

consider what it is about some questions that make 

them easy (or agreeable or important, etc.), and what it is 

about other questions that make them difficult (or 

disagreeable, unimportant, etc.). This exercise in theory 

development is important because it promotes 

understanding of the variable. After the first analysis of 

the data, compare the empirical item order with the 

theoretical item order. Do the respondents actually order 

the items in the expected way? If not, why not? If so, are 

there some individuals or groups who did not? Why? 

10. Consider the intended population of respondents and 

speculate on the average score that might be expected 

from the survey. If the expected average score is near the 

minimum or the maximum possible, the instrument is off 

target. Targeting and reliability can be improved by 

adding items that provoke responses at the unused end of 

the rating scale. Measurement error is lowest in the 

middle of the measurement continuum, and increases as 

measures approach the extremes. Given a particular 

amount of variation in the measures, more error reduces 

reliability and less error increases it. Well-targeted 

instruments enhance measurement efficiency by providing 

lower error, increased reliability, and more statistically 

significant distinctions among the measures for the same 

number of questions asked and rating options offered. 

11. If it is possible to write enough questions to calibrate a 

bank of more items than any one respondent need ever 

see, design the initial calibration study to have two 

forms that each have enough items to produce the desired 

measurement reliability. Use the theory to divide the 

items into three equal groups, with equal numbers of 

items in each group drawn from each theoretical 

calibration range. Make sure that each form is 

administered to samples of respondents from the same 

population who vary with respect to the construct 

measured, and who number at least 200. Convincing 

demonstrations of metric invariance and theoretical 

control of the construct become possible when the 

separate-sample calibrations of the items common to the 

two forms plot linearly and correlate highly, and when the 

common- and separate-form items each produce measures 

of their respective samples that also plot linearly and 

correlate highly. 

12. Be sure to obtain enough demographic information 

from respondents to be able to test hypotheses concerning 

the sources of failures of invariance. It can be frustrating 

to see significant differences in calibration values and be 
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unable to know if they are due to sex, age, ethnic, 

educational, income or other identifiable differences. 

13. As soon as data from 30-50 respondents are 

obtained, and before more forms are printed and 

distributed, analyze the data and examine the rating 

scale structure and the model fit using a measurement 

analysis that evaluates each item’s rating scale 

independently. Make sure the analysis was done correctly 

by checking responses in the Guttman scalogram against a 

couple of respondents' surveys, and by examining the item 

and person orders for the expected variable. Identify items 

with poorly populated response options and consider 

combining categories or changing the category labels. 

Study the calibration order of the category transitions and 

make sure that a higher category always represents more 

of the variable; consider combining categories or 

changing the category labels for items with jumbled or 

reversed structures. Test out recodes in another analysis; 

check their functioning, and then examine the item order 

and fit statistics, starting with the fit means and standard 

deviations. If some items appear to be addressing a 

different construct, ask if this separate variable is relevant 

to the measurement goals. If not, discard or modify the 

items. If so, use these items as a start at constructing 

another instrument.  

14. When the full calibration sample is obtained, 

maximize measurement reliability and data 

consistency. First identify items with poor model fit. If an 

item is wildly inconsistent, with a mean square or 

standardized fit statistic markedly different from all 

others, examine the item itself for reasons why its 

responses should be so variable. Does it perhaps pertain to 

a different variable? Does the item ask two or more very 

different questions at once? It may also be relevant to find 

out which respondents are producing the inconsistencies, 

as their identities may suggest reasons for their answers. 

If the item itself seems to be the source of the problem, it 

may be set aside for inclusion in another scale, or for 

revision and later re-incorporation. If the item is 

functioning in different ways for different groups of 

respondents, then the data for the two groups on this item 

ought to be separated into different columns in the 

analysis, making the single item into two. Finally, if the 

item is malfunctioning for no apparent reason and for only 

a very few otherwise credible respondents, it may be 

necessary to omit temporarily only specific, especially 

inconsistent responses from the calibration. Then, after 

the highest reliability and maximum data consistency are 

achieved, another analysis should be done, one in which 

the inconsistent responses are replaced in the data. The 

two sets of measures should then be compared in plots to 

determine how much the inconsistencies affect the results. 

15. The instrument calibration should be compared with 

calibrations of other similar instruments used to 

measure other samples from the same population. Do 

similar items calibrate at similar positions on the 

measurement continuum? If not, why not? If so, how well 

do the pseudo-common items correlate and how near the 

identity line do they fall in a plot? If the rating scale 

category structures are different, are the transition 

calibrations meaningfully spaced relative to each other? 

16. Calibration results should be fed back onto the 

instrument itself. When the variable is found to be 

quantitative and item positions on the metric are stable, 

that information should be used to reformat the survey 

into a self-scoring report. This kind of worksheet builds 

the results of the instrument calibration experiment into 

the way information is organized on a piece of paper, 

providing quantitative results (measure, error, percentile, 

qualitative consistency evaluation, interpretive guidelines) 

at the point of use. No survey should be considered a 

finished product until this step is taken. 

17. Data should be routinely sampled and recalibrated 

to check for changes in the respondent population that 

may be associated with changes in item difficulty. 

18. For maximum utility, the instrument should be 

equated with other instruments intended to measure the 

same variable, creating a reference standard metric. 

19. Everyone interested in measuring the variable should 

set up a metrology system, a way of maintaining the 

reference standard metric via comparisons of results 

across users and brands of instruments. To ensure 

repeatability, metrology studies typically compare 

measures made from a single homogeneous sample 

circulated to all users. This is an unrealistic strategy for 

most survey research, so a workable alternative would be 

to occasionally employ two or more previously equated 

instruments in measuring a common sample. Comparisons 

of these results should help determine whether there are 

any needs for further user education, instrument 

modification, or changes to the sampling design. 
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