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The Rasch  Model as a Construct Validation Tool
The definition of validity has undergone many changes. 
Kelley (1927:14) defined validity as the extent to which a 
test measures what it purports to measure. Guilford (1946: 
429) argued that “a test is valid for any thing with which 
it correlates”. In 1955, Cronbach and Meehl wrote the 
classic article, Construct Validity in Psychological Tests, 
where they divided test validity into four types: 
predictive, concurrent, content and construct, this last one 
being the most important one. Predictive and concurrent 
validity were also referred to as criterion-related validity. 

Threats to construct validity 

One important aspect of construct validity is the 
trustworthiness of score meaning and its interpretation. 
The scientific inquiry aiming at establishing this aspect of 
validity is called the evidential basis of test validity.  

A major threat to construct validity that obscures score 
meaning and its interpretation, according to Messick 
(1989), is construct under-representation. This refers to 
the imperfectness of tests in accessing all features of the 
construct. Whenever we embark on developing a test, we 
glean some features of the construct according to our 
definition of the construct (which itself might be faulty 
and poorly defined) which we plan to measure. And it is 
very probable that we leave out some important features 
that we should have included. This narrows the test in 
terms of the focal construct, and limits the score meaning 
and interpretation. Messick argues that “the breadth of 
content specifications for a test should reflect the breadth 
of the construct invoked in score interpretation” (p.35). 
The issue has been referred to as authenticity by Messick. 
“The major measurement concern of authenticity is that 
nothing important be left out of the assessment of the 
focal construct” (Messick 1996: 243).  

Another threat to construct validity is referred to as 
construct-irrelevant variance by Messick. There are 
always some unrelated sub-dimensions that creep into 
measurement and contaminate it. These sub-dimensions 
are irrelevant to the focal construct and in fact we do not 
want to measure them, but their inclusion in the 
measurement is inevitable. They produce reliable 
(reproducible) variance in test scores, but it is irrelevant to 
the construct. Construct irrelevant variance may arise in 
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two forms: construct-irrelevant easiness and construct-
irrelevant difficulty. As the terms imply, construct-
irrelevant difficulty means inclusion of some tasks that 
make the construct difficult and results in invalidly low 
scores for some people. Construct-irrelevant easiness, on 
the other hand, lessens the difficulty of the test. For 
instance, construct-irrelevant easy items include items that 
are susceptible to ‘test-wise’ solutions, so giving an 
advantage to ‘test-wise’ examinees who obtain scores 
which are invalidly high for them (Messick, 1989).  

Rasch measurement issues 

The items which do not fit the Rasch model are instances 
of multidimensionality and candidates for modification, 
discard or indications that our construct theory needs 
amending. The items that fit are likely to be measuring the 
single dimension intended by the construct theory.  

One of the advantages of the Rasch model is that it builds 
a hypothetical unidimensional line along which items and 
persons are located according to their difficulty and 
ability measures. The items that fall close enough to the 
hypothetical line contribute to the measurement of the 
single dimension defined in the construct theory. Those 
that fall far from it are measuring another dimension 
which is irrelevant to the main Rasch dimension. Long 
distances between the items on the line indicate that there 
are big differences between item difficulties so people 
who fall in ability close to this part of the line are not as 
precisely measured by means of the test. It is argued 

here that misfitting items are indications of construct-

irrelevant variance and gaps along the unidimensional 

continuum are indications of construct under-

representation.   

Figure 1 shows a hypothetical unidimensional variable 
that is intended to be measured with an educational test. 
The items have been written to operationalize a 
hypothetical construct according to our construct theory 
and its definition. The items are coded RC1-RC8 and SI1-
SI6. The ‘#’ indicates persons. As you can see, the items 
and persons are located along one line. The items at the 
top of the line are more difficult; the persons at the top of 

the line are more able. As you go down the line, the items 
become easier and the persons become less able. The 
vertical line on the right hand side indicates the statistical 
boundary for a fitting item. The items that fall to the right 
of this line introduce subsidiary dimensions and unlike the 
other items do not contribute to the definition of the 
intended variable. They need to be studied, modified or 
discarded. They can also give valuable information about 
our construct theory which may cause us to amend it.  

Here there are two items which fall to the right of this 
line, i.e. they do not fit; this is an instance of construct-

irrelevant variance. This line is like a ruler with the 
items as points of calibration. The bulk of the items and 
the persons are opposite each other, which means that the 
test is well-targeted for the sample. However, the distance 
between the three most difficult items is large. If we want 
to have a more precise estimate of the persons who fall in 
this region of ability we need to have more items in this 
area. The same is true about the three easiest items. This 
is an instance of construct under-representation.  

The six people indicated by ### (each # represents 2 
persons), whose ability measures are slightly above 1 on 
the map, are measured somewhat less precisely. Their 
ability is above the difficulty of all the items but SI2 and 
SI5. This means that 12 items are too easy and 2 items are 
too hard for them. Therefore, they appear to be of the 
same ability. However, had we included more items in 
this region of difficulty to cover gap between RC6 and 
SI2, we would have got a more precise estimate of their 
ability and we could have located them more precisely on 
the ability scale. They may not be of the same ability 
level, although this is what the current test shows. For 
uniformly precise measurement, the difficulty of the items 
should match the ability of the persons and the items 
should be reasonably spaced, i.e., there should not be 
huge gaps between the items on the map. 

The principles of the Rasch model are related to the 
Messickian construct-validity issues. Rasch fit statistics 
are indications of construct irrelevant variance and gaps 
on Rasch item-person map are indications of construct 
under-representation. Rasch analysis is a powerful tool for 
evaluating construct validity.   

Purya Baghaei, Azad University, Mashad, Iran. 
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Some Types of Validity 

Content validity: do the items address the intended 
latent variable? 

Construct validity: does the item difficulty hierarchy 
make sense? 

Predictive validity: does the person ability hierarchy 
make sense? 

Concurrent validity: do the person ability measures 
correlate well with other test instruments probing 
the same latent variable? 

Statistical validity (reliability): does the instrument 
distinguish between high and low abilities with 
sufficient statistical certainty? 

Fit validity: do the data fit the Rasch model usefully 
well for the purposes of measurement? 
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Notes on the  
12th IMEKO TC1-TC7 Joint Symposium on Man, Science & Measurement 

Held in Annecy, France, September 3-5, 2008

Two technical committees of the International 
Measurement Confederation, IMEKO, recently held their 
12th symposium on philosophical and social issues 
associated with measurement and metrology, including 
psychosocial measurement applications, in Annecy, 
France.  The committees involved were TC-1 (Education 
and Training in Measurement and Instrumentation) and 
TC-7 (Measurement Science). The meeting was 
conducted in English, with participants from 21 countries 
around the world. For this symposium, 77 papers were 
submitted, of which 60 were accepted. There were three 
plenary keynote lectures, and 74 registered attendees. A 
detailed program is available at 
http://imeko2008.scientific-symposium.com/fileadmin/progIMEKO2008V1.pdf . 

In the first plenary session, Ludwik Finkelstein introduced 
himself as an elder preserving the organizational memory 
of the TC-7 on Measurement Science. Finkelstein touched 
on personal relationships from the past before describing 
new potentials for the technical committee beyond 
technical measurement issues. He was particularly 
interested in making the point that measurement theory 

has been more thoroughly and rigorously grounded in 

psychology, education and other fields than it has been 

by metrological technologists. He contrasted strong 
versus weak measurement theories, and positivist versus 
anti-positivist philosophies of measurement, referring to 
the mathematical metaphysics of Galileo and Kelvin. 
Postmodernism was presented as anti-objective. The 
difference between metrological and psychometric 
reliability was pointed out, with an apparent assumption 
of inherent opposition and probable irreconcilability. 
Finkelstein also touched on issues of validity, public 
verifiability, standards, and traceability. He called for the 
introduction of traceability in psychosocial measurement. 

William Fisher’s presentation on “New Metrological 
Horizons” began by referring to Finkelstein’s 
observations concerning the complementary potentials 
presented by probabilistic measurement theory’s 
articulation of invariance and parameter separation as 
criteria for objectivity, on the one hand, and by 
metrology’s focus on the traceability of individual 
measures to global reference standards. Evidence of the 
potential for traceability was offered in the form of the 
cross-sample invariance of item calibrations, the cross-
instrument invariance of measures, and the cross-
instrument/cross-sample invariance of constructs. 
Finkelstein responded to the presentation, saying that he 
was greatly encouraged and that his hopes for the future 
of measurement and metrology had been elevated. 

In other presentations, subjective evaluations of sensory 
perceptions were compared with objective optical, haptic 
(tactual), and auditory measures. One presentation in this 
category was in effect a multifaceted judged visual 

inspection. Another presentation involved a probabilistic 
model for dichotomous observations quite similar to a 
Rasch model. The majority of the papers concerned the 
design and optimization of practical measurement 
networks and systems. A natural place for Rasch 
measurement emerged in the context of evaluating the 
effectiveness of metrology education programs. 

 The second day’s plenary keynote was delivered by Paul 
De Bièvre, the Editor-In-Chief of the journal, 
Accreditation and Quality Assurance: Journal for 

Quality, Comparability, and Reliability in Chemical 

Measurement. His topic concerned the International 
Standards Organization’s (ISO) International Metrology 
Vocabulary. De Bièvre was enthused enough about 
Fisher’s presentation to invite an article introducing 
Rasch’s probabilistic models to the Accreditation and 

Quality Assurance journal readership. Because of its 
similarity to De Bièvre’s own work in clarifying the 
vocabulary of metrology, Fisher offered his work on the 
ASTM E 2171 - 02 Standard Practice for Rating Scale 

Measures for consideration. 

TC-7 publishes Metrology & Measurement Systems, and 
prides itself on moving articles from submission to review 
to publication within three months. A recent special issue, 
“The Evolving Science of Measurement”, included 
articles with titles such as “Rankings as Ordinal Scale 

Measurement Results” (outlining an elaborate two-
dimensional analysis),  “Advances and Generic Problems 

in Instrument Design Methodology,” and “Self-

Configuring Measurement Networks.”  

IMEKO membership is structured with member countries 
(39), friends of one or more technical committees, and 
honorary members.  

TC-7 will participate in the XIX IMEKO World Congress 
that will be held in Lisbon, Portugal, September 6-11, 
2009, with the theme of “Fundamental and Applied 

Metrology.” Information on abstract submission is 
available on the site: http://www.imeko2009.it.pt/call.php 
through which abstracts can be submitted electronically. 
These are due December 15, 2008. Notification of 
acceptance will be made by April 15, 2009, and final 
paper submissions are due by June 1, 2009. 

The next joint TC1-TC7 symposium on Man, Science & 

Measurement will be held in London at City University, 
September 1-3, 2010, with the theme “Without 

Measurement, There is No Science, and Without Science, 

There is No Measurement.” Ludwik Finkelstein and 
Sanowar Khan will host the meeting. Professor Kahn 
indicated that there is interest in having a session on 
psychosocial measurement theory and practice. 

William P. Fisher, Jr. 

http://imeko2008.scientific
http://www.imeko2009.it.pt/call.php
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ICOM International Conference on Outcomes Measurement Program 
Bethesda, Maryland - September 11-13, 2008

Thursday, September 11, 2008 

Welcome and Opening Remarks: Thomas F. Hilton, 
Program Official at National Institute on Drug Abuse 
(NIDA), ICOM Host  

Plenary Session 1 
a. John Ware: ‘Advances in Health Measurement Models 

and Data Collection Technologies: Implications for 
Standardizing Metrics & Making Assessment Tools 
More Practical.’ 

b. Michael Dennis: ‘Measurement Challenges in 
Substance Use and Dependency.’ 

c. A. Jackson Stenner: ‘Substantive Theory, General 
Objectivity and an Individual Centered 
Psychometrics.’  

1A.1: IRT/Rasch in the Assessment of Change 
Chair: Rita Bode 
Discussant: Karon Cook 
a. Julie Carvalho: ‘Value Choices as Indicators of Healthy 

Changes.’ 
b. Ken Conrad: ‘Measuring Change on the GAIN 

Substance Problems Scale Using a Rasch Ruler.’ 
c. Donald Hedeker: ‘Application of Item Response 

Theory Models for Intense Longitudinal Data on 
Smoking.’  

1A.2: Theory and Importance of IRT/Rasch 
Chair: A. Jackson Stenner 
Discussant: David Andrich 
a. Robert Massof: ‘A Physical Metaphor for Explaining 

the Mechanics of Rasch and IRT Models.’ 
b. Ann Doucette: ‘The Role of Measurement in 

Evaluating the Effectiveness of Psychotherapy 
Outcomes.’  

1A.3: Mental Health and Differential Item Functioning 
Chair: Benjamin Brodey 
Discussant: Paul Pilkonis 
a. Lohrasb Ahmadian, Robert Massof: ‘Validity of 

Depression Measurement in Visually Impaired People 
- Investigating Differential Item Functioning by 
Chronic Diseases.’ 

b. Neusa Rocha, Marcelo Fleck, Mick Power, Donald 
Bushnell: ‘Cross-cultural evaluation of the 
WHOQOL-Bref domains in primary care depressed 
patients using Rasch Analysis.’ 

c. Heidi Crane, Laura E. Gibbons, Mari Kitahata, Paul K. 
Crane: ‘The PHQ-9 depression scale - Psychometric 
characteristics and differential item functioning (DIF) 
impact among HIV-infected individuals.’  

1A.4: CAT Demonstration 
Barth Riley: ‘Application of computerized adaptive 

testing in clinical substance abuse practice: Issues and 
strategies.’ 

1A.5: Demonstration 
LaVerne Hanes-Stevens: Teaching Clinicians How to 

Relate Measurement Models to Clinical Practice: An 
example using the Global Appraisal of Individual 
Needs (GAIN).  

Lunch 
a. Mark Wilson: ‘Latent Growth Item Response Models.’ 
b. Ronald Hambleton: ‘A Personal History of Computer-

Adaptive Testing - Short Version.’  

1B.1: Health-related Quality of Life 
Chair: Alan Tennant 
Discussants: David Cella and John Ware 
a. David Feeny, Suzanne Mitchell, Bentson McFarland: 

‘What are the key domains of health-related quality of 
life for methamphetamine users? Preliminary results 
using the Multi-Attribute System for 
Methamphetamine Use (MAS-MA) Questionnaire.’ 

b. Francisco Luis Pimentel, Jose Carlos Lopes: ‘HRQOL 
Instrument Construction Using Rasch Model.’ 

c. I-Chan Huang, Caprice A. Knapp, Dennis Revicki, 
Elizabeth A. Shenkman: ‘Differential item functioning 
in pediatric quality of life between children with and 
without special health care needs.’  

1B.2: Measurement of Substance Use Disorders - I 
Chair: Brian Rush 
Discussant: A. Thomas McLellan 
a. Maria Orlando Edelen, Andrew Morral, Daniel 

McCaffrey: ‘Creating an IRT-based adolescent 
substance use outcome measure.’ 

b. Betsy Feldman, Katherine E. Masyn: ‘Measuring and 
Modeling Adolescent Alcohol Use - A Simulation 
Study.’  

1B.3: Demonstration 
David Andrich: ‘Interactive data analysis using the Rasch 

Unidimensional Measurement Model - RUMM - 
Windows Software.’  

1B.4: Demonstration 
Christine Fox, Svetlana Beltyukova: ‘Constructing Linear 

Measures from Ordinal Data - An Example from 
Psychotherapy Research.’  

1C.1: Assessing Physical Impairment and Differential 
Item Functioning 

Chair: Barth Riley 
Discussant: Svetlana Beltyukova 
a. Gabrielle van der Velde, Dorcas E. Beaton, Sheilah 

Hogg-Johnson, Eric Hurwitz, Alan Tennant: ‘Rasch 
Analysis of the Neck Disability Index.’ 

b. Sara Mottram, Elaine Thomas, George Peat: 
‘Measuring locomotor disability in later life - do we 
need gender-specific scores?’ 

c. Kenneth Tang, Dorcas Beaton, Monique Gignac, Diane 
Lacaille, Elizabeth Badley, Aslam Anis, Claire 
Bombardier: ‘The Work Instability Scale for 
Rheumatoid Arthritis - Evaluation of Differential Item 
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Functioning in workers with Osteoarthritis and 
Rheumatoid Arthritis using Rasch Analysis.’  

1C.2: Applications of the Global Appraisal of Individual 
Need (GAIN) 

Chair: Michael Dennis 
Discussant: LaVerne Hanes-Stevens 
a. Sean Hosman, Sarah Kime: ‘Using the GAIN-SS in an 

online format for screening, brief intervention and 
referral to treatment in King County.’ 

b. Richard Lennox, Michael Dennis, Mark Godley, Dave 
Sharar: ‘Behavioral Health Risk Assessment - 
Predicting Absenteeism and Workman’s 
Compensation Claims with the Gain Short Screener.’  

1C.3: Item Functioning and Validation Issues 
Chair: Allen Heinemann 
Discussant: Bryce Reeve 
a. Benjamin Brodey, R.J. Wirth, D. Downing, J. Koble: 

‘DIF analysis between publicly - and privately-funded 
persons receiving mental health treatment.’ 

b. Pey-Shan Wen, Craig A. Velozo, Shelley Heaton, Kay 
Waid-Ebbs, Neila Donovan: ‘Comparison of Patient, 
Caregiver and Health Professional Rating of a 
Functional Cognitive Measure.’ 

c. Mounir Mesbah: ‘A Empirical Curve to Check 
Unidimensionality and Local dependence of items.’  

1C.4: Methodological Issues in Measurement Validation 
Chair: Tulshi Saha 
Discussant: Susan Embretson 
a. Richard Sawatzky, Jacek A. Kopec: ‘Examining 

Sample Heterogeneity with Respect to the 
Measurement of Health Outcomes Relevant to Adults 
with Arthritis.’ 

b. Craig Velozo, Linda J. Young, Jia-Hwa Wang: 
‘Developing Healthcare Measures - Monte Carlo 
Simulations to Determine Sample Size Requirements.’ 

c. Leigh Harrell, Edward W. Wolfe: ‘Effect of Correlation 
Between Dimensions on Model Recovery using AIC.’  

1C.5: Questions and Answers for Those New to 
IRT/Rasch  

Wine & Cheese Reception, and Poster Session 
a. Katherine Bevans, Christopher Forrest: ‘Polytomous 

IRT analysis and item reduction of a child-reported 
wellbeing scale.’ 

b. Shu-Pi Chen. Bezruczko, N., Maher, J. M., Lawton, C. 
S., & Gulley, B. S.: ‘Functional Caregiving Item 
hierarchy Statistically Invariant across Preschoolers.’ 

c. Michael A. Kallen, DerShung Yang: ‘When increasing 
the number of quadrature points in parameter and 
score estimation no longer increases accuracy.’ 

d. Ian Kudel, Michael Edwards, Joel Tsevat: ‘Using the 
Nominal Model to Correct for Violations of Local 
Independence.’ 

e. Lisa M. Martin, Lori E. Stone, Linda L. Henry, Scott D. 
Barnett, Sharon L. Hunt, Eder L. Lemus, Niv Ad: 
‘Resistance to Computerized Adaptive Testing (CAT) 
in Cardiac Surgery Patients.’ 

f. Michael T. McGill, Edward W. Wolfe: ‘Assessing 
Unidimensionality in Item Response Data via 
Principal Component Analysis of Residuals from the 
Rasch Model.’ 

g. Mesfin Mulatu: ‘Internal Mental Distress among 
Adolescents Entering Substance Abuse Treatment - 
Examining Measurement Equivalence across 
Racial/Ethnic and Gender Groups.’  

Friday, September 12, 2008 

Plenary Session 2 
a. David Cella: ‘Patient-Reported Outcomes Measurement 

Information System (PROMIS) Objectives and 
Progress Report.’ 

b. Expert Panel on PROMIS Methods and Results, 
including Karon Cook, Paul Pilkonis, and David 
Cella. 

c. Robert Gibbons: ‘CAT Testing for Mood Disorder 
Screening.’  

2A.1: Applications of Person Fit Statistics 
Chair/Discussant: A. Jackson Stenner 
a. Augustin Tristan, Claudia Ariza, María Mercedes 

Durán: ‘Use of the Rasch model on cardiovascular 
post- surgery patients and nursing treatment.’ 

b. Ken Conrad: ‘Identifying Atypicals At Risk for Suicide 
Using Rasch Fit Statistics.’ 

c. Ya-Fen Chan, Barth Riley, Karen Conrad, Ken Conrad, 
Michael Dennis: ‘Crime, Violence and IRT/Rasch 
Measurement.’  

2A.2: Applications of Computerized Adaptive Testing - I  
Chair/Discussant: Barth Riley 
a. Milena Anatchkova, Matthias Rose, Chris Dewey, 

Catherine Sherbourne, John Williams: ‘A Mental 
Health Computerized Adaptive Test (MH-CAT) for 
Community Use.’ 

b. Ying Cheng: ‘When CAT meets CD - Computerized 
adaptive testing for cognitive diagnosis.’ 

c. Neila Donovan, Craig A. Velozo, Pey-Shan Wen, 
Shelley C. Heaton, Kay Waid-Ebbs: ‘Item Level 
Psychometric Properties of the Social Communication 
Construct Developed for a Computer Adaptive 
Measure of Functional Cognition for Traumatic Brain 
Injury.’  

2A.3: Applications of IRT/Rasch in Mental Health 
Chair: Michael Fendrich 
Discussant: David Thissen 
a. Susan Faye Balaban, Aline Sayer, Sally I. Powers: 

‘Refining the Measurement of Post Traumatic Stress 
Disorder Symptoms - An Application of Item 
Response Theory.’ 

b. Dennis Hart, Mark W. Werneke, Steven Z. George, 
James W. Matheson, Ying-Chih Wang, Karon F. 
Cook, Jerome E. Mioduski, Seung W. Choi: ‘Single 
items of fear-avoidance beliefs scales for work and 
physical activities accurately identified patients with 
high fear.’ 

c. Monica Erbacher, Karen M. Schmidt, Cindy Bergeman, 
Steven M. Boker: ‘Partial Credit Model Analysis of 
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the Positive and Negative Affect Schedule with 
Additional Items.’  

2A.4: Assessing Education of Clinicians 
Chair: Craig Velozo 
Discussant: Mark Wilson 
a. Erick Guerrero: ‘Measuring Organizational Cultural 

Competence in Substance Abuse Treatment.’ 
b. Ron Claus: ‘Using Rasch Modeling to Develop a 

Measure of 12-Step Counseling Practices.’ 
c. Jean-Guy Blais, Carole Lambert, Bernard Charlin, Julie 

Grondin, Robert Gagnon: ‘Scoring the Concordance 
of Script Test using a two-steps Rasch Partial Credit 
Modeling.’ 

d. Megan Dalton, Jenny Keating, Megan Davidson, 
Natalie de Morten: ‘Development of the Assessment 
of Physiotherapy Practice (APP) instrument - 
investigation of the psychometric properties using 
Rasch analysis.’  

2A.5: CAT Demonstration 
a. Otto Walter: ‘Transitioning from fixed-questionnaires 

to computer-adaptive tests: Balancing the items and 
the content.’ 

b. Matthias Rose: ‘Experiences with Computer Adaptive 
Tests within Clinical Practice.’  

2A.6: Panel - Applying Unidimensional Models to 
Inherently Multidimensional Data 

a. R. Darrell Bock: ‘Item Factor Analysis with the New 
POLYFACT Program.’ 

b. Robert Gibbons: ‘Bifactor IRT Models.’ 
c. Steven Reise: ‘The Bifactor Model as a Tool for 

Solving Many Challenging Psychometric Issues.’  

Lunch 
a. Alan Tennant: ‘Current issues in cross cultural 

validity.’ 
b. A. Thomas McLellan: ‘Serving Clinical Measurement 

Needs in Addiction - Translating the Science of 
Measurement into Clinical Value.’  

2B.1: Applications of Computerized Adaptive Testing - II 
Chair: William Fisher 
Discussant: Otto Walter 
a. Karen Schmidt, Andrew J. Cook, David A. Roberts, 

Karen C. Nelson, Brian R. Clark, B Eugene Parker, 
Jr., Susan E. Embretson: ‘Calibrating a 
Multidimensional CAT for Chronic Pain Assessment’. 

b. Milena Anatchkova, Jason Fletcher, Mathias Rose, 
Chris Dewey, Hanne Melchior: ‘A Clinical Feasibility 
Test of Heart Failure Computerized Adaptive Test 
(HF-CAT).’  

2B.2: Discerning Typologies with IRT/Rasch 
Chair: Kendon Conrad 
Discussant: Peter Delany 
a. Michael Dennis: ‘Variation in DSM-IV Symptom 

Severity Depending on Type of Drug and Age: A 
Facets Analysis.’ 

b. Tulshi Saha, Bridget F. Grant: ‘Trajectories of Alcohol 
Use Disorder - An Application of a Repeated 
Measures, Hierarchical Rasch Model.’ 

c. James Henson, Brad T. Conner: ‘Substance Use and 
Different Types of Sensation Seekers - A Rasch 
Mixture Analysis.’  

2B.3: Measurement of Treatment Processes 
Chair: Thomas Hilton 
Discussant: Paul Pilkonis 
a. Craig Henderson, Faye S. Taxman, Douglas W. Young: 

‘A Rasch Model Analysis of Evidence-Based 
Treatment Practices Used in the Criminal Justice 
System.’ 

b. Panagiota Kitsantas, Faye Taxman: ‘Uncovering 
complex relationships of factors that impact offenders’ 
access to substance abuse programs - A regression tree 
analysis.’ 

c. Jason Chapman, Ashli J. Sheidow, Scott W. Henggeler: 
‘Rasch-Based Development and Evaluation of a Test 
for Measuring Therapist Knowledge of Contingency 
Management for Adolescent Substance Use.’  

2B.4: Measurement of Substance Use Disorders - II 
Chair: Michael Fendrich 
Discussant: Robert Massof 
a. Brian Rush, Saulo Castel: ‘Validation and comparison 

of screening tools for mental disorders among people 
accessing substance abuse treatment.’ 

b. Allen Heinemann: ‘Using the Rasch Model to develop 
a substance abuse screening instrument for vocational 
rehabilitation agencies.’  

2B.5: Demonstration 
Mark Wilson: ‘Constructing Measures: The BEAR 

Assessment System.’  

2C.1: Psychometric Issues in Measurement Validation 
Chair: Ya-Fen Chan 
Discussant: Craig Velozo 
a. Laura Stapleton, Tiffany A. Whittaker: ‘Obtaining item 

response theory information from confirmatory factor 
analysis results.’ 

b. Jean-Guy Blais, Éric Dionne. ‘Skewed items responses 
distribution for the VF-14 visual functioning test - 
using Rasch models to explore collapsing of rating 
categories.’ 

c. Michelle Woodbury, Craig A. Velozo: ‘A Novel 
Application of Rasch Output - A Keyform Recovery 
Map to Guide Stroke Rehabilitation Goal-Setting and 
Treatment-Planning.’ 

d. Zhushan Li: ‘Rasch Related Loglinear Models with 
Ancillary Variables in Aggression Research.’  

2C.2: Methodological Issues in Differential Item 
Functioning (DIF) 

Chair/Discussant: Allen Heinemann 
a. Hao Song, Rebecca S. Lipner: ‘Exploring Practice 

Setting Effects with Item Difficulty Variation on a 
Recertification Exam - Application of Two-Level 
Rasch Model.’ 
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b. Barth Riley, Michael Dennis: ‘Distinguishing between 
Treatment Effects and the Influence of DIF in a 
Substance Abuse Outcome Measure Using Multiple 
Indicator Multiple Causes (MIMIC) Models.’ 

c. Rita Bode, Trudy Mallinson: ‘Consistency Across 
Samples in the Identification of DIF.’  

2C.3: Perspectives on Current Practice and Beyond 
Chair: John Ware 
Discussant: David Andrich 
a. Stephen F. Butler, Ann Doucette: ‘Inflexxion’s 

Computer Administered Addiction Severity Index - 
Successes, Challenges, and Future Directions.’ 

b. William Fisher: Uncertainty, the Welfare Economics of 
Medical Care, and New Metrological Horizons  

2C.4: World Health Organization Measures 
Chair: Francisco Luis Pimentel 
Discussant: Alan Tennant 
a. T. Bedirhan Ustun: ‘World Health Organization 

Disability Assessment Schedule II (WHODAS II) - 
Development, Psychometric Testing, and 
Applications.’ 

b. Neusa S. Rocha: ‘Measurement Properties of 
WHOQOL-Bref in Alcoholics Using Rasch Models.’  

2C.5: Meet the Authors 
Chair: Barth Riley 
David Andrich, Susan Embretson, Christine Fox, Ronald 

Hambleton, David Thissen and Mark Wilson.  

Saturday, September 13, 2008 

Plenary Session 3 
a. David Andrich: ‘The polytomous Rasch model and 

malfunctioning assessments in ordered categories - 
Implications for the responsible analysis of such 
assessments.’ 

b. Susan Embretson: ‘Item Response Theory Models for 
Complex Constructs.’ 

c. David Thissen: ‘The Future of Item Response Theory 
for Health Outcomes Measurement.’  

Panel Session 3A 
The Future of Measurement in Behavioral Health Care 
Chair: Ken Conrad 
David Andrich, Michael Dennis, Thomas Hilton, A. 

Thomas McLellan, Bryce Reeve, Alan Tennant and T. 
Bedirhan Ustun.Applying the Rasch Model 

 in the Human Sciences 
A hands-on introductory workshop 

University of Johannesburg, South Africa 

1, 2 and 3 December 2008 

Conducted by Prof. Trevor Bond 
http://www.bondandfox.com/ 

The workshop will introduce participants to the 
conceptual underpinnings of the Rasch model and will 
support them to start analyzing their own data with Rasch 
analysis software. Participants will receive a copy of 
Trevor Bond’s co-authored book Applying the Rasch 

Model: Fundamental Measurement in the Human 

Sciences (LEA, 2007), which contains Bond&FoxSteps, 
the software used in the workshop. The structure of the 
workshop is: 

Day 1:   Introduction to the model. Analyzing tests with 
dichotomous items (including multiple choice items). 

Day 2:   Analyzing tests with polytomous items (such as 
Likert-type items) 

Day 3:   Evaluating the fit of data to the requirements of 
the model. Evaluating item and test functioning across 
demographic groups. Linking different forms of a test on 
a common scale. Publishing a Rasch measurement 
research paper. 

The UJ Department of Human Resource Management and 
the People Assessment in Industry interest group invite 
you, your colleagues, and students to attend the 
workshop. A certificate of attendance will be issued to 
participants who attend all three days of the workshop. 
For more information please contact Deon de Bruin on 
011 559 3944 or deondb /at/ uj.ac.za 

Journal of Applied Measurement 

Volume 9, Number 3. Fall 2008 

Formalizing Dimension and Response Violations of Local 
Independence in the Unidimensional Rasch Model. 
Ida Marais and David Andrich, 200-215. 

Calibration of Multiple-Choice Questionnaires to Assess 
Quantitative Indicators. Paola Annoni and Pieralda 

Ferrari, 216-228. 

The Impact of Data Collection Design, Linking Method, 
and Sample Size on Vertical Scaling Using the Rasch 
Model. Insu Paek, Michael J. Young, and Qing Yi, 

229-248 

Understanding the Unit in the Rasch Model. Stephen M. 

Humphry and David Andrich, 249-264 

Factor Structure of the Developmental Behavior Checklist 
using Confirmatory Factor Analysis of Polytomous 
Items. Daniel E. Bontempo, Scott. M. Hofer, Andrew 

Mackinnon, Andrea M. Piccinin, Kylie Gray, Bruce 

Tonge, and Stewart Einfeld, 265-280 

Overcoming Vertical Equating Complications in the 
Calibration of an Integer Ability Scale for Measuring 
Outcomes of a Teaching Experiment. Andreas 

Koukkoufis and Julian Williams, 281-304. 

Understanding Rasch Measurement: Estimation of 
Decision Consistency Indices for Complex 
Assessments: Model Based Approaches. Matthew 

Stearns and Richard M. Smith, 305-315 

Richard M. Smith, Editor 

JAM web site: www.jampress.org 

http://www.bondandfox.com/
http://www.jampress.org
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Formative and Reflective Models: Can a Rasch Analysis Tell the Difference?

Structural equation modeling (SEM) distinguishes two 
measurement models: reflective and formative (Edwards 
& Bagozzi, 2000). Figure 1 contrasts the very different 
causal structure hypothesized in the two models. In a 
reflective model (left panel), a latent variable (e.g., 
temperature, reading ability, or extraversion) is posited as 
the common cause of item or indicator behavior. The 
causal action flows from the latent variable to the 
indicators. Manipulation of the latent variable via 
changing pressure, instruction, or therapy causes a change 
in indicator behavior. Contrariwise, direct manipulation of 
a particular indicator is not expected to have a causal 
effect on the latent variable. 

 

 

 

 

Reflective Formative 

Figure 1. Causal Structures. 

A formative model, illustrated on the right-hand side of 
Figure 1, posits a composite variable that summarizes the 
common variation in a collection of indicators. A 
composite variable is considered to be composed of 
independent, albeit correlated, variables. The causal 
action flows from the independent variables (indicators) 
to the composite variable. As noted by Bollen and Lennox 
(1991), these two models are conceptually, substantively, 
and psychometrically different. We suggest that the 
distinction between these models requires a careful 
consideration of the basis for inferring the direction of 
causal flow between the construct and its indicators. 

Given the primacy of the causal story we tell about 
indicators and constructs, what kind of experiment, data, 
or analysis could differentiate between a latent variable 
story and a composite variable story? For example, does a 
Rasch analysis or a variable map or a set of fit statistics 
distinguish between these two different kinds of 
constructs? We think not! A Rasch model is an 
associational (think: correlational) model and as such is 
incapable of distinguishing between the latent-variable-
causes-indicators story and the indicators-cause-
composite-variable story.  

Some examples from without and within the Rasch 
literature should help illustrate the distinction between 
formative and reflective models. The paradigmatic 
example of a formative or composite variable is 

socioeconomic status (SES). Suppose the four indicators 
are education, occupational prestige, income, and 
neighborhood. Clearly, these indicators are the causes of 
SES rather than the reverse. If a person finishes four years 
of college, SES increases even if where the person lives, 
how much they earn, and their occupation stay the same. 
The causal flow is from indicators to construct because an 
increase in SES (job promotion) does not imply a 
simultaneous change in the other indicators. Bollen and 
Lennox (1991) gave another example: life stress. The four 
indicators are job loss, divorce, recent bodily injury, and 
death in the family. These indicators cause life stress. 
Change in life stress does not imply a uniform change in 
probabilities across the indicators. Lastly, the construct 
could be accuracy of eyewitness identification and its 
indicators could be recall of specific characteristics of the 
person of interest. These characteristics might include 
weight, hair style, eye color, clothing, facial hair, voice 
timber, and so on. Again, these indicators cause accuracy; 
they are not caused by changes in the probability of 
correct identification.  

The examples of formative models presented above are 
drawn from the traditional test theory, factor analysis, and 
SEM literatures. Are Rasch analyses immune to confusion 
of formative and reflective models? 

Imagine constructing a reading rating scale. A teacher 
might complete the rating scale at the beginning of the 
school year for each student in the class. Example items 
(rating structure) might include: (1) free or reduced price 
lunch (1,0), (2) periodicals in the home (0,1,2,3), (3) daily 
newspaper delivered at home, (4) student read a book for 
fun during the previous summer (1,0), (5) student 
placement in reading group (0,1,2,3), (6) student repeated 
a grade (1,0), (7) students current grade (1,2,3,…), (8) 
English is student’s first language (1,0), and so on. Now, 
suppose that each student, in addition to being rated by 
the teacher, took a Lexile-calibrated reading test. The 
rating scale items and reading test items could be jointly 
analyzed using WINSTEPS or RUMM2020. The analysis 
could be anchored so that all item calibrations for the 
reading rating items would be denominated in Lexiles. 
After calibration, the best-fitting rating scale items might 
be organized into a final scale and accompanied by a 
scoring guide that converts raw counts on the rating scale 
into Lexile reader measures. The reading scale is 
conceptually a composite formative model. The causal 
action flows from the indicators to the construct. Arbitrary 
removal of two or three of the rating items could have a 
disastrous effect on the predictive power of the set and, 
thus, on the very definition of the construct, whereas, 
removal of two or three reading items from a reading test 
will not alter the construct’s definition. Indicators (e.g., 
items) are exchangeable in the reflective case and 
definitional in the formative case.  
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Perline, Wainer, and Wright (1979), in a classic paper, 
used parole data to “measure a latent trait which might be 
labeled ‘the ability to successfully complete parole 
without any violations’” (p. 235). Nine dichotomously 
scored items rated for each of 490 participants were 
submitted to a BICAL analysis. The items were rated for 
presence or absence of: high school diploma or GED, 18 
years or older at first incarceration, two or less prior 
convictions, no history of opiate or barbiturate use, 
release plan to live with spouse or children, and so on. 
The authors concluded, “In summary, the parole data 
appeared to fit [the Rasch Model] overall. . . . However, 
when the specific test for item stability over score groups 
was performed . . . there were serious signs of item 

instability” (p. 249). For our purposes, we simply note 
that the Rasch analysis was interpreted as indicating a 
latent variable when it seems clear that it is likely a 
composite or formative construct.  

A typical Rasch analysis carries no implication of 
manipulation and thus can make no claim about causal 
action. This means that there may be little information in 
a traditional Rasch analysis that speaks to whether the 
discovered regularity in the data is best characterized as 
reflective (latent variable) or formative (composite 
variable).  

Rasch models are associational (i.e., correlational) models 
and because correlation is necessary but not sufficient for 
causation, a Rasch analysis cannot distinguish between 
composite and latent variable models. The Rubin-Holland 
framework for causal inference specifies: no causation 

without manipulation. It seems that many Rasch 
calibration efforts omit the crucial last step in a latent 
variable argument: that is, answering the question, “What 
causes the variation that the measurement instrument 
detects?” (Borsboom, 2005). We suggest that there is no 
single piece of evidence more important to a construct’s 
definition than the causal relationship between the 
construct and its indicators.  

A. Jackson Stenner, Donald S. Burdick, & Mark H. Stone 

Bollen, K. A., & Lennox, R. (1991). Conventional 
wisdom on measurement: A structural equation 
perspective. Psychological Bulletin, 100, 305-314. 

Borsboom, D. (2005). Measuring the Mind. Cambridge, 
MA: Cambridge University Press. 

Burdick, D. S., Stone, M. H., & Stenner, A. J. (2006). The 
combined gas law and a Rasch reading law. Rasch 

Measurement Transactions, 20(2), 1059-1060. 

Edwards, J. R., & Bagozzi, R. P. (2000). On the nature 
and direction of relationships between constructs and 
measures. Psychological Methods, 5, 155-174. 

Perline, R., Wainer H., & Wright, B. D. (1979). The 
Rasch model as additive conjoint measurement. 
Applied Psychological Measurement, 3(2), 237-255.  

Perils of Ratings 

Numeric ratings are one of the most abused components 
of any measurement and assessment system. They make 
people angry, destroy fragile working relationships, make 
one employee judge another, and create an artificial, 
thoroughly uncomfortable situation for both the rater and 
the person whose work is being rated. 

The wonder to me, the way most numeric rating systems 
are designed, is why you would expect anything different 
from their use. If an organization takes unsubstantiated, 
undocumented, uncommunicated, secret numbers and 
springs a numeric rating on employees periodically, 
expect the worst. 

Susan M. Heathfield, About.com 

Rasch-related Coming Events  

Sept. 11-13, 2008, Thurs.-Sat. International Conference 
on Outcomes Measurement (ICOM) , Washington 
D.C. http://icom-2008.org/ 

Sept. 17-19, 2008, Wed.-Fri. 1st International Conference 
on High School and College Educational Evaluation, 
Veracruz, Mexico http://www.ieia.mx.com  

Sept. 2008 - Dec. 2009 3-day Rasch courses (A. Tennant, 
RUMM2020), Leeds, UK 

http://www.leeds.ac.uk/medicine/rehabmed/psychometric 

Oct. 14-15, 2008, Tues.-Wed. International Symposium 
on Measurement of Participation in Rehabilitation 
Research, Toronto, Canada 

http://www.acrm.org/annual_conference/Precourses.cfm 

Oct. 18-19, 2008, Sat.-Sun. An Introduction to Rasch 
Measurement: Theory and Applications (Smith & 
Smith, Winsteps, etc.), Chicago 
http://www.jampress.org/  

Oct. 21-23, 2008, Tues.-Thurs. CAESL Center for the 
Assessment and Evaluation of Student Learning 
2008, San Francisco CA http://www.caesl.org/ 

Oct. 31 - Nov. 28, 2008, Fri.-Fri. Many-Facet Rasch 
Measurement online course (M. Linacre, Facets), 
http://www.statistics.com/ 

Nov. 10, 2008, Monday III Workshop “Modelos de Rasch 
en Administración de Empresas”, Tenerife, Spain. 
http://www.iude.ull.es/ 

Dec. 1-3, 2008, Mon.-Wed. Workshop: Applying the 
Rasch Model in the Human Sciences (T. Bond, 
Bond&FoxSteps), deondb -at- uj.ac.za 

Jan. 2-30, 2009, Fri.-Fri. Practical Rasch Measurement - 
Core Topics online course (M. Linacre, Winsteps), 
http://www.statistics.com/ 

April 13-17, 2009, Mon.-Fri. AERA Annual Meeting, San 
Diego, CA, USA, http://www.aera.net/ 

August, 2010 Probabilistic models for Measurement - 50 
years, Conference, Copenhagen, Denmark 

http://icom
http://www.ieia.mx.com
http://www.leeds.ac.uk/medicine/rehabmed/psychometric
http://www.acrm.org/annual_conference/Precourses.cfm
http://www.jampress.org/
http://www.caesl.org/
http://www.statistics.com/
http://www.iude.ull.es/
http://www.statistics.com/
http://www.aera.net/
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The Expected Value of a Point-Biserial (or Similar) Correlation
Interpreting the observed value of a point-biserial 
correlation is made easier if we can compare the observed 
value with its expected value. Is the observed value much 
higher than the expected value (indicating dependency in 
the data) or much lower than expected (indicating 
unmodeled noise)? With knowledge of how the observed 
value compares with its expected value, there is no need 
for arbitrary rules such as “Delete items with point-
biserials less than 0.2.”  

The general formula for a Pearson correlation coefficient 
is: 

 

Point-Biserial Correlation (including all observations 

in the correlated raw score) 

Suppose that Xn is Xni the observation of person n on item 
i. Yn is Rn, the raw score of person n, then the point-
biserial correlation is: 

 

where X̄ i is the mean of the {Xni} for item i, and R̄ is the 
mean of the Rn. 

According to the Rasch model, the expected value of Xni 
is Eni and the model variance of Xni around its expectation 
is Wni. The model variances of X̄ i, Rn, R̄ are ignored here. 
Σ(Eni) = Σ(Xni), so that Ē i = X̄ i. 

Thus an estimate of the expected value of the point-
measure correlation is given by the Rasch model 
proposition that: Xni = Eni ±√Wni 

 

Since ±√Wni is a random residual, its cross-product with 
any other variable is modeled to be zero. Thus 

 

which provides a convenient formula for computing 
the expected value of the point-biserial correlation. 

Point-Biserial Correlation (excluding the current 

observation in the correlated raw score) 

 

where R̄' is the mean of the Rn-Xni. 

 

 

is the expected value of the point-biserial correlation 
excluding the current observation. 

Point-Measure Correlation 

Similarly, suppose that Yn is Bn, the ability measure of 
person n, then the point-measure correlation is: 

 

where B̄ is the mean of the Bn. 

Thus an estimate of the expected value of the point-
measure correlation is: 

 

which provides a convenient formula for computing the 
expected value of a point-measure correlation. 

John Michael Linacre 

Here is a worked example for a point-measure correlation: 
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Steps Leading to a Straight Line: Constructing a Variable 
Social science involves the study of variables and the aspects, attributes, events, and behaviors 
that compose it. In social science, we move from ideas and observations to counts, measures, and 
predictions. The main idea, event, activity, behavior, or dimension on which we focus our 
observations we call our “variable.” 

A variable “varies” — the main idea stays the same, but its range of attributes can be arranged 
along a single line. There can be more of it or less of it. It can be weaker or stronger, smaller or larger, sicker or healthier, 
pro-something or anti-something. We study a variable because we want to measure its range and study the effects of other 
events on that range. 

1. Can you describe your variable in just a few words, e.g., “patient progress after a certain treatment,” or “people’s 

attitudes toward politics?” 
_______________________________________________________________________________________ 

_______________________________________________________________________________________ 

2. What theory or ideas underlie your research interest and your selection of a variable? 

_______________________________________________________________________________________ 

_______________________________________________________________________________________ 

3. Think about what a “low performer” would be on your variable scale. Describe the kind of person, events, 

behaviors, etc., which would be at the beginning, or lowest end of your variable scale. 

_______________________________________________________________________________________ 

_______________________________________________________________________________________ 

4. Describe a “high performer,” a person, event, set of behaviors, etc., that would be at the highest end of your 

variable. 

_______________________________________________________________________________________ 

_______________________________________________________________________________________ 

5. This is the hardest. Describe persons, events, etc. that would be in the middle range of your variable scale. 

_______________________________________________________________________________________ 

_______________________________________________________________________________________ 

6. Here (or on a separate sheet) write three items exemplifying the high, middle, and low range of your variable. (You 

may already have survey items from your ongoing research.) Number each item. 

 High end items (hard to agree with) 

_______________________________________________________________________________________ 

_______________________________________________________________________________________ 

 Middle range items 
_______________________________________________________________________________________ 

_______________________________________________________________________________________ 

 Low end items (easy to agree with) 

_______________________________________________________________________________________ 

_______________________________________________________________________________________ 

7. Below is a horizontal line representing your variable. Mark the end points in a way appropriate to your variable, 

e.g., less - more, easy - hard, sick - healthy. Arrange your items (by their numbers) along this variable line where 

you think they belong. (In other words, how do you think respondents will react to your items?) If you have trouble 
figuring out where an item belongs on the line, consider whether it is actually targeted on your variable. 

 
 

You now have the framework for building an instrument with a linear array of hierarchical survey items that will elucidate 
your variable. 

 Marci Enos’ Handout for Ben Wright’s Questionnaire Design class, U. Chicago, 2000
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Tuneable Goodness-of-Fit Statistics
One of the persistent problems in psychometrics is the 
determination of the goodness-of-fit between observed 
and expected values.  The problem is particularly tricky 
with discrete multivariate data that form the basis for 
measurement in the social, behavioral, and health 
sciences.   

Early work in statistics led to Pearson’s chi-square 
statistic (Pearson, 1900).  The chi-square statistic has been 
quite robust and useful in a variety of applications.  
Several researchers have proposed adaptations and 
improvements of chi-square statistics that have ranged 
from adjustments in the degrees of freedom (Fisher, 1924) 
to the development of the closely related log likelihood 
ratio statistic (Wilks, 1935).  Unfortunately, the 
assumptions of the Pearson chi-square statistic are not 
always met, and therefore the χ2 sampling distribution is 
not necessarily a useful guide for judgments regarding 
model-data fit.   

The purpose of this note is to describe a family of 
tuneable goodness-of-fit statistics based on the Power 
Divergence (PD) Statistics (Cressie & Read, 1988).  
Tuneable goodness-of-fit statistics offer a useful approach 
for examining both person and item fit that has not been 
explored with Rasch measurement models. 

The basic equation for tuneable statistics, τ2, is 
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where Oi is the observed frequency in a cell i, Ei is the 
expected frequency for cell i based on the model, and k is 
the number of cells.  Tuneable goodness-of-fit statistics 
can be obtained by inserting the appropriate λ value. The 
λ values can range from -∞ to +∞.   

In order to illustrate the use of tuneable statistics, data 
from Stouffer and Toby (1951) are presented in Table 1.  
These data are used to illustrate the obtained estimates of 
τ2 for several λ values.   See Engelhard (2008) for 
additional details regarding the Stouffer-Toby scale, as 
well as the calculation of conditional probabilities and 
expected frequencies based on Rasch analyses. 

Table 2 presents the values for various goodness-of-fit 
statistics with λ values reported at various points between 
-3.00 and 3.00.  Some of these λ values correspond to 
other goodness-of-fit statistics, and these are labeled in 
the Table 2.  The 95th percentile of the chi-squared 
distribution with 17 degrees of freedom is χ2 (17, p=.05) = 
27.59.  Based on this value, we conclude that the 
goodness-of-fit is quite good between the observed and 
expected frequencies based on the Rasch model.  Only 
one of the estimated values suggests rejecting the null 
hypothesis (λ value = 2).  

Table 1.  
Stouffer-Toby (1951) Data 

Person 
Scores 
(θ,N) 

Item 
Patterns 
ABCD 

Observed 
Freq. 

Conditional 
Probability 
of Response 

Pattern 

Rasch 
Expected 

Freq. 

     

4 
(N=20) 

1111 20 --- --- 

1110 38 .830 45.65 

1101   9 .082   4.51 

1011   6 .075   4.12 

3 
(1.52, 
N=55) 

0111   2 .013   0.72 

1100 24 .461 29.04 

1010 25 .408 25.70 

0110   7 .078   4.91 

1001   4 .039   2.46 

0101   2 .007   0.44 

2 
(-.06, 
N=63) 

0011   1 .007   0.44 

1000 23 .734 26.42 

0100   6 .136   4.90 

0010   6 .120   4.32 

1 
(-1.54, 
N=36) 

0001   1 .010   0.36 

0 
(N=42) 

0000 42 --- --- 

 k=4 N=216  N’=154 

Note.  Rasch item difficulties are -1.89, -.20, -.10, and 
2.20 logits for items A to D respectively.   
Conditional probabilities and expected frequencies are 
based on the Rasch model. 
 
Table 2. 

 Values of the Tuneable Goodness-of-fit statistics 

λ value 

 

Estimate of 

τ
2
 

Authors 

-2.00 10.58 Neyman (1949) 

-1.50 11.31  

-1.00 
 (λ → -1.1) 

11.88 Kullback (1959) 

-.67 13.12  

-.50 13.56 Freeman & Tukey (1950) 

.00 
 (λ →.001) 

15.16 Wilks (1935) 

.67 18.23 Read & Cressie (1988) 

1.00 20.37 Pearson (1900) 

1.50 24.71  

2.00 31.13* * p < .05 
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This note describes a potentially useful set of tuneable 
goodness-of-fit statistics.  It is important to recognize that 
explorations of goodness-of-fit should not involve a 
simple decision (e.g., reject the null hypothesis), but also 
require judgments and “cognitive evaluations of 
propositions” (Rozeboom, 1960, p. 427). 

Additional research is needed on the utility of these 
tuneable statistics for making judgments regarding overall 
goodness-of-fit, item and person fit, and various 
approaches for defining and conducting residual analyses 
within the framework of Rasch measurement.  This 
research should include research on the sampling 
distributions for various tuneable statistics applied to 
different aspects of goodness-of-fit, research on 
appropriate degrees of freedom, and research on the 
versions of the τ2 statistic that yield the most relevant 
substantive interpretations within the context of Rasch 
measurement theory and the construct being measured. 

George Engelhard, Jr. 

Emory University 

Engelhard, G. (2008).  Historical perspectives on 
invariant measurement: Guttman, Rasch, and Mokken.  
Measurement: Interdisciplinary Research and 

Perspectives (6), 1-35. 

Fisher, R.A. (1924). The conditions under which χ2 
measures the discrepancy between observations and 
hypothesis.  Journal of the Royal Statistical Society, 87, 
442-450. 

Freeman, D.H., & Tukey, J.W. (1950).  Transformations 
related to the angular and the square root.  Annals of 

Mathematical Statistics, 21, 607-611. 

Kullback, S. (1959).  Information theory and statistics.  
New York: John Wiley. 

Neyman, J. (1949). Contribution to the theory of the χ2
 

test.  Proceedings of the First Berkeley Symposium on 

Mathematical statistics and Probability, 239-273. 

Pearson, K. (1900).  On the criterion that a given system 
of deviations from the probable in the case of a correlated 
system of variables is such that it can be reasonably 
supposed to have arisen from random sampling.  
Philosophy Magazine, 50, 157-172. 

Read, T.R.C., & Cressie, N.A.C. (1988).  Goodness-of-fit 

for discrete multivariate data.  New York: Springer-
Verlag. 

Rozeboom, W.W. (1960).  The fallacy of the null-
hypothesis significance test.  Psychological Bulletin, 57, 
416-428. 

Stouffer, S.A. & Toby, J. (1951).  Role conflict and 
personality.  The American Journal of Sociology, 56, 395-
406. 

Wilks, S.S. (1935).  The likelihood test of independence 
in contingency tables.  Annals of Mathematical Statistics, 

6, 190-196. 

Invariance and Item Stability 

Kingsbury’s (2003) study of the long term stability of 
item parameter estimates in achievement testing has a 
number of important features. 

First, rather than using parameter estimates from a set of 
items used in a single test, it investigated the stability of 
item parameter estimates in two large item banks used by 
the Northwest Evaluation Association (NWEA) to 
measure achievement in mathematics (> 2300 items) and 
reading (c.1400 items) with students from school years 2-
10 in seven US states. Sample sizes for the 1999-2000 
school year item calibrations ranged from 300 to 10,000 
students. 

Second, the elapsed time since initial calibration ranged 
from 7 to 22 years.  

Third, and most importantly (for these purposes), “the 
one-parameter logistic (1PL) IRT model (Wright, 1977) 
was used to create and maintain the underlying 
measurement scales used with these banks.” While 
thousands of items have been added to these item banks 
over the course of time, each item has been connected to 
the original measurement scale through the use of IRT 
procedures and systematic Rasch measurement practices 
(Ingebo, 1997). 

The observed correlations between the original and new 
item difficulties were extremely high (.967 in 
mathematics, .976 in reading), more like what would be 
expected if items were given to two samples at the same 
time, rather than samples separated by a time span from 7 
to 20 years. Over that period, the average drift in the item 
difficulty parameters was .01 standard deviations of the 
mean item difficulty estimate. In Rasch measurement 
terms (i.e., focusing on impact on the measurement 
scales), the largest observed change in student scores 
moving from the original calibrations to the new 
calibrations was at the level of the minimal possible 
difference detectable by the tests, with over 99% of 
expected changes being less than the minimal detectable 
difference (Kingsbury, 2003). 

NWEA have demonstrated measure-invariance beyond 
anything achieved anywhere else in the human sciences. 

Trevor Bond 

Hong Kong Institute of Education 

Ingebo, G. S. (1997). Probability in the measure of 
achievement. Chicago, IL: MESA Press. 

Kingsbury, G. (2003, April). A long-term study of the 
stability of item parameter estimates. Paper presented at 
the annual meeting of the American Educational Research 
Association, Chicago. 

Wright, B.D. (1977). Solving Measurement Problems 
with the Rasch model. Journal of Educational 
Measurement, 14(2), 97-116.



 

1158                                          Rasch Measurement Transactions 22:1 Summer 2008 

The Cash Value of Reliability
The relationships among survey response rates, sample 
size, confidence intervals, reliability, and measurement 
error are often confused. Each of these are examined in 
turn, with an eye toward a systematic understanding of the 
role each plays in measurement. Reliability and precision 
estimates are of considerable utility, but their real cash 
value for practical applications is only rarely appreciated. 
This article aims to rectify confusions and provide 
practical guidance in the design and calibration of quality 
precision instruments. 

Response Rates, Sample Size, 

 and Statistical Confidence 

First, contrary to the concerns of many consumers of 
survey data, response rates often have little to do with the 
validity or reliability of survey data.  

To see why, consider the following contrast of two 
extreme examples. Imagine that 1,000 survey responses 
are obtained from 1,000 persons selected as 
demographically representative of a population of 1 
million, for a 100% response rate. Also imagine that 
1,000 responses from exactly the same people are 
obtained, but this time in response to surveys that were 
mailed to a representative cross-section of 100,000 
possible respondents, for a 1% response rate.  

In either case, with both the 100% and the 1% response 
rates, the sample of 1,000 provides a confidence interval 
of, at worst, 3.1%, at 95% confidence for a dichotomous 
proportion, e.g., in an opinion poll, 52% ± 3.1% prefer 
one political candidate to another. As long as the relevant 
demographics of the respondents (sex, age, ethnicity, etc.) 
are in the same proportions as they are in the population, 
and there is no self-selection bias, then the 1% response 
rate is as valid as the 100% response rate. This insight 
underlies all sampling methodology. 

The primary importance of response rates, then, concerns 
the cost of obtaining a given confidence interval and of 
avoiding selection bias. If 1,000 representative responses 
can be obtained from 1,000 mailed surveys, the cost of the 
3.1% confidence interval in the response data is 1% of 
what the same confidence interval would cost when 1,000 
representative responses are obtained from 100,000 
mailed surveys. 

The statistical point is that, as shown in Figure 1, as 
sample size increases, the confidence interval for a 
dichotomous proportion decreases. Figure 2 shows that a 
nearly linear relationship between sample size and 
confidence interval is obtained when the sample size is 
expressed logarithmically-scaled. This relationship is a 
basic staple of statistical inference, but its role in the 
determination of measurement reliability is widely 
misunderstood. 

Reliability and Sample Size 

This same relationship with sample size is exhibited by 
reliability coefficients, such as KR-20 or Cronbach alpha. 
The relationship is complicated, however, by persistent 
confusions in the conceptualization of reliability. 

In an article that is as relevant today as on the day it was 
published, Green, Lissitz, and Mulaik (1977; also see 
Hattie, 1985) show that “confusion in the literature 
between the concepts of internal consistency and 
homogeneity has led to a misuse of coefficient alpha as an 
index of item homogeneity.” They “observed that though 
high ‘internal consistency’ as indexed by a high alpha 
results when a general factor runs through the items, this 
does not rule out obtaining high alpha when there is no 
general factor running through the test items” (Hattie, 
1985, p. 144).  

Green, et al. then “concluded that the chief defect of alpha 

Figure 1. Confidence interval of a proportion vs. 
sample size. 

Figure 2. Confidence interval of a proportion vs. 
sample size (log-scaled). 
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as an index of dimensionality is its tendency to increase as 
the number of items increase” (Hattie, 1985, p. 144). 
Hattie (1985, p. 144) summarizes the state of affairs, 
saying that, “Unfortunately, there is no systematic 
relationship between the rank of a set of variables and 
how far alpha is below the true reliability. Alpha is not a 
monotonic function of unidimensionality.” 

The desire for some indication of reliability, as expressed 
in terms of precision or repeatably reproducible measures, 
is, of course, perfectly reasonable. But interpreting alpha 
and other reliability coefficients as an index of data 
consistency or homogeneity is missing the point. To test 
data for the consistency needed for meaningful 
measurement based in sufficient statistics, one must first 
explicitly formulate and state the desired relationships in a 
mathematical model, and then check the data for the 
extent to which it actually embodies those relationships. 

Model fit statistics (Smith, 2000) are typically 
employed for this purpose, not reliability 
coefficients. 

However, what Hattie, and Green, et al., 
characterize as the “chief defect” of coefficient 
alpha, “its tendency to increase as the number of 
items increase,” has its productive place and 
positive purpose. This becomes apparent as one 
appreciates the extent to which the estimation of 
measurement and calibration errors in Rasch 
measurement is based in standard statistical 
sampling theory. The Spearman-Brown prophecy 
formula asserts a monotonic relationship between 
sample size and measurement reliability, expressed 
in the ratio of the error to the true standard 
deviation, as is illustrated in Linacre’s (1993) 
Rasch generalizability nomograph.  

Reliability and Confidence Intervals 

To illustrate this relationship, Rasch theory-based 
(model) errors and confidence intervals were 
obtained for a range of different test lengths (see 
Table). The modeled measurement errors 
associated with different numbers of dichotomous 
distinctions were read from Linacre’s (1993) 
nomograph. The 95% confidence intervals for the 
raw score proportions produced from same 
numbers of items were found using the Wilson 
(1927) Score Interval .  

As already noted, Figures 1 and 2 show that the 
confidence intervals have a curvilinear relationship 
with the numbers of items/persons (or dichotomous 
distinctions). Figure 3 shows that Rasch error 
estimates have the same relationship with the 
counts as the confidence intervals. The confidence 
intervals and error estimates accordingly have a 
linear, one-to-one relationship, as shown in Figure 
4, because they are both inversely proportional to 
the square-root of the person or item sample size 
for any given raw score percent. 

The statistical frame of reference informing the 
interpretation of confidence intervals is, however, in 
direct opposition to the measurement frame of reference 
informing the interpretation of error estimates (Linacre, 
2007). In statistical theory, confidence intervals and 
standard errors shrink for a given sample size as the 
response probability moves away from 0.50 toward either 
0.00 or 1.00. That is, raw-score error is taken to be lowest 
at the extremes of the measurement continuum since there 
is little opportunity for extreme scores to vary. 

In measurement theory, however, the association of 
internal consistency with statistical sufficiency reverses 
the situation. Now, as is shown in Linacre’s (2007) figure, 
the error distribution is U-shaped instead of arched. This 
is because the consistent repetition of the unit of 
measurement across respondents and items gives us more 

Table 

Reliability, Error, and Confidence Intervals 

Sample Size 
 or Number  

of Items 

True or 
Adj SD 

Error Reliability Separation Strata 
Confidence 

Interval 
50%±CI% 

2 1 1.75 0.24 0.60 0.80 40.55 
2 2 1.75 0.55 1.10 1.47 40.55 
3 1 1.45 0.33 0.70 0.93 37.47 
3 2 1.45 0.65 1.40 1.87 37.47 
4 1 1.25 0.40 0.80 1.07 35.00 
4 2 1.25 0.72 1.60 2.13 35.00 
5 1 1.10 0.45 0.90 1.20 32.96 
5 2 1.10 0.77 1.80 2.40 32.96 
6 1 1.00 0.50 1.00 1.33 31.24 
6 2 1.00 0.80 2.00 2.67 31.24 
7 1 0.90 0.55 1.10 1.47 29.76 
7 2 0.90 0.83 2.20 2.93 29.76 

12 1 0.70 0.65 1.40 1.87 24.62 
12 2 0.70 0.89 2.90 3.87 24.62 
21 1 0.55 0.77 1.80 2.40 19.66 
21 2 0.55 0.93 3.60 4.80 19.66 
24 1 0.50 0.80 2.00 2.67 18.57 
24 2 0.50 0.94 4.00 5.33 18.57 
30 1 0.45 0.85 2.40 3.20 16.85 
30 2 0.45 0.95 4.50 6.00 16.85 
36 1 0.40 0.86 2.50 3.33 15.53 
36 2 0.40 0.96 5.00 6.67 15.53 
48 1 0.35 0.88 2.70 3.60 13.61 
48 2 0.35 0.97 6.00 8.00 13.61 
60 1 0.30 0.92 3.33 4.44 12.27 
60 2 0.30 0.98 6.67 8.89 12.27 
90 1 0.25 0.94 4.00 5.33 10.12 
90 2 0.25 0.98 8.00 10.67 10.12 

120 1 0.20 0.96 5.00 6.67 8.81 
120 2 0.20 0.99 10.00 13.33 8.81 
250 1 0.15 0.98 7.00 9.67 6.15 
250 2 0.15 1.00 15.00 20.33 6.15 
500 1 0.10 0.99 10.00 13.67 4.37 
500 2 0.10 1.00 22.00 29.67 4.37 
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confidence in the amounts indicated in the middle of the 
scale than they can at its extremes. 

What this means is that the one-to-one correspondence of 
confidence intervals and error estimates shown in Figure 
4 will hold only for any one response probability. As the 
probability of success or agreement, for instance, moves 
away from 0.50 (or as the difference between the measure 
and the calibration moves away from 0), the confidence 
interval will shrink while the Rasch measurement error 
will increase.  

That said, plotting the errors and confidence intervals with 
Cronbach’s alpha reveals the effect of the true standard 
deviation in the measures or calibrations on the numbers 
of items associated with various errors or confidence 
intervals (Figures 5 and 6). Again, as the number of items 
increases, alpha for the person sample increases, and the 
confidence intervals and errors decrease, all else being 
equal. Similarly when the number of persons increases, an 
equivalent to alpha for the items increases. 

The point of these exercises is to bring home the cash 
value of reliably reproducible precision in measurement. 
Hattie (1985, pp. 143-4) points out that,  

“In his description of alpha Cronbach (1951) proved (1) 
that alpha is the mean of all possible split-half 
coefficients, (2) that alpha is the value expected when two 
random samples of items from a pool like those in the 
given test are correlated, and (3) that alpha is a lower 
bound to the proportion of test variance attributable to 
common factors among the items.”  

This is why item estimates calibrated on separate samples 
correlate to about the mean of the scales’ reliabilities, and 
why person estimates measured using different samples of 
items correlate to about the mean of the measures’ 
reliabilities. (This statement is predicated on estimates of 
alpha that are based in the Rasch framework’s 
individualized error terms. Alpha assumes a single 
standard error derived from that proportion of the 
variance not attributable to a common factor. It 
accordingly is insensitive to off-target measures that will 
inflate Rasch error estimates to values often considerably 
higher than the modeled expectation. This means that 
alpha can over-estimate reliability, and that Rasch 
reliabilities will often be more conservative. This is 
especially the case in the presence of large proportions of 
missing data. For more information, see Linacre (1996).) 

That is, the practical utility of reliability and Rasch 
separation statistics is that they indicate how many ranges 
there are in the measurement continuum that are 
repeatedly reproducible (Fisher, 1992). When reliability is 
lower than about 0.60, the top measure cannot be 
statistically distinguished from the bottom one with any 
confidence. Two instruments each measuring the same 
thing with a 0.60 reliability will produce measures that 
correlate about 0.60, less well than individual height and 
weight correlate.  

Conversely, as reliability increases, so does the number of 
ranges in the scale that can be confidently distinguished. 
Measures from two instruments with reliabilities of 

• 0.67 will tend to vary within two groups that can be 
separated with 95% confidence; 

• 0.80 will vary within three groups; 

• 0.90, four groups; 

• 0.94, five groups; 

• 0.96, six groups;  

• 0.97, seven groups, and so on. 

Figure 8 shows the theoretical relationship between strata 
(measurement or calibration ranges with centers three 
errors apart, Wright & Masters, 2002), Cronbach’s alpha, 
and sample size or the number of dichotomous 
distinctions. High reliability, combined with satisfactory 
model fit, makes it possible to realize the goal of creating 
measures that not only stay put while your back is turned, 
but that stay put even when you change instruments! 

William P. Fisher, Jr., Ph.D. 

Avatar International LLC 
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Figure 3. Measurement error vs. sample size (log-scaled). 

 
Figure 4. Measurement error vs. confidence interval of 

proportion. 

 
Figure 5. Reliability and confidence interval. 

SD=1 on the left. SD=2 on the right. 
 

Figure 6. Reliability and measurement error 

 
Figure 7. Reliability and sample size. 

 
Figure 8. Strata (measurements 3 errors apart). 
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Variance in Data Explained by Rasch Measures
A Rasch model predicts that there will be a random aspect 
to the data. This is well understood. But what does 
sometimes surprise us is how large the random fraction is. 
The Figure shows the proportion of randomness predicted 
to exist in dichotomous data under various conditions. 

The x-axis is the absolute difference between the mean of 
the person and item distributions, from 0 logits to 5 logits. 
The y-axis is the percent of variance in the data explained 
by the Rasch measures. 

Each plotted line corresponds to one combination of 
standard deviations. The lesser of the person S.D. and the 
item S.D. is first, 0 to 5 logits, followed by “~”. Then the 
greater of the person S.D. and the item S.D. 

Thus, the arrows indicate the line labeled “0-3”. This 
corresponds to a person S.D. of 0 logits and an item S.D. 
of 3 logits, or a person S.D. of 0 logits and an item S.D.  
of 3 logits. The Figure indicates that, with these measure 
distributions about 50% of the variance in the data is 
explained by the Rasch measures. 

When the person and item S.D.s, are around 1 logit, then 
only 25% of the variance in the data is explained by the 
Rasch measures, but when the S.D.s are around 4 logits, 
then 75% of the variance is explained.  Even with very 
wide person and item distributions with S.D.s of 5 logits 
only 80% of the variance in the data is explained. 

Here are some percentages for empirical datasets: 

% Variance 

Explained 
Dataset 

Winsteps 

File name 

71.1% Knox Cube Test exam1.txt 

29.5% CAT test exam5.txt 

  0.0% coin tossing - 

50.8% 
Liking for Science 

(3 categories) 
example0.txt 

37.5% 
NSF survey 

(3 categories) 
interest.txt 

30.0% 
NSF survey 

(4 categories) 
agree.txt 

78.7% 
FIM®  

(7 categories) 
exam12.txt 

Please email me your own percentages to add to this list. 

John Michael Linacre 

Editor, Rasch Measurement Transactions 
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as an outcome measure for individuals with physical and 
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Mallinson, PhD, OTR/L, NZROT, Margaret Brown, PhD, 
Jennifer Bogner, PhD, Rita Bode, PhD, Joy Hammel, 
PhD, OTR, Gale Whiteneck, PhD, FACRM, Alarcos 
Cieza, PhD, MPH, Susan Connors, Don Lollar, EdD, 
Mary Ann McColl, PhD, Alan Jette, PhD, David Tulsky, 
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