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Measurement Decision Theory from 

a Rasch Perspective 

 

“Measurement Decision Theory (MDT), 

developed by A. Wald (1947) and now widely 

used in engineering, agriculture, and computing, 

provides a simple model for the analysis of 

categorical data. Measurement decision theory 

requires only one key assumption -- that the items 

are independent” (Rudner, 2001). Independent 

items are also a Rasch assumption. MDT and 

Rasch agree thus far. 

 

Let’s look at a worked example of MDT (ABA, 

2016). ABA provide the responses and 

calculations for fictitious examinee, Dr. Able. 

These are shown in Table 1 with additional 

computations: 

 

Dr. Able is a new examinee. Previous examinees 

have fallen into two groups, Group S of successful 

examinees and Group F of failing examinees. For 

each item, there is the success rate of the Group, 

the item p-value (probability value). The p-values 

are higher for Group S than for Group F. In Table 

1, the odds-ratio and log-odds (logit) of each item 

for each group is shown. We see that, on average, 

the items are 0.8 logits easier for Group S than for 

Group F. This indicates that the average 

difference in Group abilities is 0.8 logits.  

 

The MDT Latent Variable from a Rasch 

Perspective 

 

97% of the previous examinees are in Group S, 

only 3% in Group F, so we can use the Group S 

item difficulties to draw a Wright item-person 

map of the latent variable. This is shown in Figure 

1. The item difficulties are slightly different for 

Group F indicating that Group F slightly misfits 

with the variable defined by Group S. This is not 

unexpected, because the failing Group is more 

likely to have idiosyncratic knowledge, guessing, 

skipping and other off-dimensional behaviors. 

 

In Figure 2, the Rasch measure for each raw score 

is added to the map. Rasch produces the same 

measure for every way of getting a raw score. Dr. 

Able scored 3 and so is higher on the latent 

variable than the average examinee in Group S. A 

score of 2 is probably a failure, depending on the 

decision of the Examination Board about the exact 

location of the pass-fail cut-point on the latent 

variable. A score of 1 is a definite failure. 

 

MDT Likelihoods and Probabilities 

 

MDT takes a different approach. First off, it 

computes the likelihood of the examinee’s 

response string for each of the two Groups, and 

then estimates the probability that the string was 

produced by an average member of each Group. 

The likelihood of Dr. Able’s responses for an 

average member of Group S is the product of their 

probability of success on the first three items and 

failure on the fourth item = 0.80 * 0.73 * 0.58 * (1 

- 0.55) = 0.15. Similarly, for an average member 

of Group F, the likelihood is 0.07. So the 

probability that this is scored by an average 

member of Group S and not an average member 

of Group F is 0.15 / (0.15 + 0.07) = 0.68. So, Dr. 

Able probably belongs to Group S.  

 

We can do this for all the 16 possible different 

response strings. The computations are shown in 

Table 2. We can transform the probability of 

success for an average member of Group S into its 

logit value. These are plotted in Figure 3 with .5 

probability positioned halfway between Group S 

and Group F. Dr. Able’s probability is the most 

probable score of 3 shown in red. Most scores of 

2 are probably Group F. Most scores of 3 are 

probably Group S. However, one score of 3 

(failure on the easiest item) is a fail and one score 

of 2 (success on the two easiest items) is a success. 

MDT is highly influenced by performance on very 

easy and very hard items. In contrast, a rationale 

for treating all items equally is given at “The 

Eternal Question about Raw Scores” 

www.rasch.org/rmt/rmt154k.htm 
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Table 1. Four items administered to Dr. Able 

Item 

Dr. Able’s 

response 

Group S:  

successful examinees 

Group F:  

failing examinees 

Group 

difference 

logits 

Item 

p-

value Odds-ratio 

Log-odds = 

logits 

Item 

p-

value Odds-ratio 

Log-odds = 

logits 

1  = 1 0.80 0.80/0.20 1.39 0.60 0.60/0.40 0.41 0.98 

2  = 1 0.73 0.73/0.37 0.68 0.53 0.53/0.47 0.12 0.56 

3  = 1 0.58 0.58/0.42 0.32 0.38 0.38/0.62 -0.49 0.81 

4  = 0 0.55 0.55/0.45 0.20 0.35 0.35/0.65 -0.62 0.82 

Score: 3 of 4  Average: 0.65  Average: -0.15 0.80 

Figure 1. Wright latent-variable map of MDT 

 
Figure 2. Wright map with person measures for possible scores. 

 

MDT Weighted Probabilities 

 

MDT goes one step further. It weights the 

likelihoods of the response strings based on the 

proportion of all examinee believed to belong to 

each group. In the ABA example, 97% of previous 

examinees belong to Group S. 3% belong to 

Group F. These percentages multiply the 

likelihoods in Table 2 and the resulting 

probabilities are shown in the rightmost column 

of Table 2.The probability for Dr. Able agrees 

with the ABA number. The weighted probabilities 

of membership in Group S rather than Group F 

vary from 0.85 to 0.99. Even a person with a score 

of 0 would succeed! Only a score of 0 on more  

 

than 8 items like these would produce a 

probability less than 0.5 and so a fail. Clearly, this 

Bayesian weighting based on previous samples is 

problematic. 

 

Conclusion 

 

MDT is a “simple model” (Rudner, 2001), but this 

is only computationally. The weighting by 

previous success rates produces nonsensical pass-

fail decisions, at least for this example. Even 

ignoring the weighting, it would be challenging to 

explain to your audience that a failure on a very 

easy item, perhaps a careless mistake or 

misunderstanding (“the item couldn’t be this  
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Table 2. Probability of response string for average member of Group S relative to Group F. 

  

 

Figure 3. The Group S (relative to Group F) probability of each response string is plotted with its score. 

 

easy!”) can lead to failure when there has been 

success on much more difficult items. 

Rasch produces a simple picture in which the two 

Groups, every item and every raw score can be 

positioned unambiguously. An intelligent,  

 

informed decision can be made about the precise 

location of the pass-fail cut-point. The sizes of 

previous pass and fail groups are irrelevant to 

decisions about the current examinee. They 

merely “put a thumb on the scales”. 

Response 

String 
Score 

Group S 

Likelihood 

Group F 

Likelihood 

Group S 

Probability 

Group S 

logit -0.4 

Weighted 

Probability 

0 0 0 0 0 0.01 0.06 0.15 -2.12 0.85 

0 0 1 0 1 0.01 0.05 0.21 -1.72 0.90 

0 0 1 1 2 0.02 0.05 0.26 -1.46 0.92 

0 1 0 0 1 0.03 0.06 0.31 -1.18 0.94 

1 0 0 0 1 0.04 0.07 0.36 -0.98 0.95 

0 1 0 1 2 0.03 0.06 0.37 -0.92 0.95 

0 1 1 0 2 0.04 0.06 0.41 -0.78 0.96 

1 0 0 1 2 0.05 0.07 0.42 -0.72 0.96 

1 0 1 0 2 0.06 0.07 0.46 -0.58 0.96 

0 1 1 1 3 0.05 0.05 0.47 -0.52 0.97 

1 0 1 1 3 0.07 0.06 0.52 -0.32 0.97 

1 1 0 0 2 0.11 0.08 0.59 -0.04 0.98 

1 1 0 1 3 0.13 0.07 0.65 0.22 0.98 

1 1 1 0 3 0.15 0.07 0.68 0.36 0.99 

1 1 1 1 4 0.19 0.07 0.74 0.62 0.99 
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John Michael Linacre 

mike@winsteps.com 
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Washington, DC. ERIC ED 457 164 

http://files.eric.ed.gov/fulltext/ED457164.pdf 

 

Wald, A. (1947). Sequential analysis. New York: 

Wiley. 

 

A New Fit Statistic for the 

Dichotomous Rasch Model: 

Modified Cut-off Values 

 

Most of the fit tests available for the Rasch model 

rely on the principles of statistical hypothesis 

testing. However, statistical tests for the Rasch 

model have certain disadvantages that affect their 

utility and reliability as model checks. The most 

serious problem of statistical significance testing 

is their dependency of statistical power on sample 

size and the number of items. Moreover, they do 

not provide direct information about the degree of 

misfit between the data and the model. Baghaei, 

Yanagida and Heene (2017) suggested a 

descriptive fit value for the Rasch model based on 

Andersen’s likelihood ratio test. Later 

examinations of the proposed fit value revealed 

that it is rather stringent. In this note, modified 

values for the test are suggested.  

 

Simulation study    

 

To investigate the properties of the proposed 

measures, simulations based on two general 

conditions were carried out: (1) without 

differential item functioning, that is under null 

hypothesis conditions and (2) with differential 

item functioning or alternative hypothesis 

conditions. In the alternative hypothesis 

conditions, data were simulated with 8 DIF items. 

The magnitude of DIF was |DIF| = 0.6 or 1/10 

range of the simulated item parameters.  

  

The item parameters were set as equally spaced 

within the interval [-3, 3], which corresponds to 

the whole spectrum of item difficulties that 

usually arise in practice. Meanwhile, the person 

parameters of examinees were randomly drawn 

from N(0, 1.5), again corresponding to the values 

of person parameters that are likely to occur in 

practice. Simulations were conducted in R (R 

Core Team, 2015) using the eRm package (Mair, 

2015). 

 

To compute the proposed fit statistics, data sets 

were split into high and low scorers, based on the 

mean of the raw scores. Next, the item parameters 

were estimated separately in the two subsamples. 

Lastly, the item parameters where brought on to a 

Journal of Applied Measurement 
Vol. 18, No. 1, 2017 

 

Constructing an Outcome Measure of Occupational 

Experience: An Application of Rasch Measurement 

Methods – Brett Berg, Karen Atler, and Anne G. Fisher 

 

Comparing Imputation Methods for Train Estimation 

Using the Rating Scale Model – Rose E. Stafford, 

Christopher R. Runyon, Jodi M. Casabianca, and 

Barbara G. Dodd 

 

Rasch Analysis of a Behavioral Checklist for the 

Assessment of Pain in Critically Ill Adults – Christophe 

Chenier, Gilles Raiche, Nadine Talbot, Bianca 

Carignan, and Celine Gelinas 

 

Scale Anchoring with the Rasch Model – Adam E. Wyse 

 

Evaluating Model-Data Fit by Comparing Parametric 

and Nonparametric Item Response Functions: 

Application of a Tukey-Hann Procedure – Jeremy Kyle 

Jennings and George Engelhard, Jr 

 

Rasch Derived Teachers’ Emotions Questionnaire – 

Kristin L. K. Koskey, Renee R. Mudrey, and Wondimu 

Ahmed 

 

Measuring Alcohol Marketing Engagement: The 

Development and Psychometric Properties of the 

Alcohol Marketing Engagement Scale – Angela 

Robertson, David T. Morse, Kristina Hood, and 

Courtney Walker 

 

Richard Smith, Editor, www.jampress.org   
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common scale. In each condition, the fit statistic 

in question was computed for 10,000 replications. 

In addition, for each fit statistic, we computed 

mean, standard deviation as well as minimum and 

maximum over all replications. The following 

statistics were computed: 

 

Root-mean-square deviation (RMSD) 

 

RMSD is the square root of the mean square 

difference between item parameters estimated in 

two subgroups after bringing them onto a 

common scale:  

𝑅𝑀𝑆𝐷 = √
∑ (𝛽̂𝑖1 − 𝛽̂𝑖2)

2𝑘
𝑖=1

𝑘
 

where𝛽̂𝑖1  is the estimated item parameter in the 

first subgroup (e.g., examinees with low scores), 

𝛽̂𝑖2 is the estimated item parameter in the second 

subgroup (e.g., examinees with high scores), and 

𝑘 is the number of items. Following the rationale 

of the Andersen’s (1973) likelihood ratio (LR) 

test, if the Rasch model holds in the population, 

equivalent item parameter estimates should be 

obtained, apart from sampling error, which means 

the RMSD should be zero.  

 

Standardized root-mean-square deviation 

(SRMSD)  

SRMSD is the RMSD divided by the pooled 

standard deviation (𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑) of item parameters 

for both subgroups:  

𝑆𝑅𝑀𝑆𝐷 =
𝑅𝑀𝑆𝐷

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑
 

The pooled standard deviation is given by: 

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑 =
𝑆𝐷(𝛽𝑖1) + 𝑆𝐷(𝛽𝑖2)

2
 

If the Rasch model holds, the RMSD should be 

zero. 

 

Normalized root-mean-square deviation 

(NRMSD) 

 

The NRMSD is the RMSD divided by the range 

of estimated item parameters in both subgroups: 

𝑆𝑅𝑀𝑆𝐷 =
𝑅𝑀𝑆𝐷

max(𝛽̂𝑖1, 𝛽̂𝑖2) − min(𝛽̂𝑖1, 𝛽̂𝑖2)
 

where max(𝛽̂𝑖1, 𝛽̂𝑖2) is the maximum of the item 

parameters in both subgroups and min(𝛽̂𝑖1, 𝛽̂𝑖2) is 

the minimum of the item parameters in both 

subgroups. Again, if the Rasch model holds, the 

SRMSD should be near zero. 

 

Chi square to degree of freedom (
𝛘𝟐

𝐝𝐟
) 

The chi square to degree of freedom (
𝜒2

𝑑𝑓
) is 

commonly applied in the framework of structural 

equation modeling (SEM) to assess model fit (see 

West, 2012). The rationale is that the expected 

value of the 𝜒2 for a correct model equals its 

degrees of freedom. Thus, if the Rasch model 

holds, 
𝜒2

𝑑𝑓
 should be close to one. The current study 

investigated 
𝜒2

𝑑𝑓
for both the Andersen’s LR test 

and the Fischer and Scheiblechner’sS statistic. 

 

Root mean square error of approximation 

(RMSEA) 

 

The RMSEA (Steiger, 1980) is a widely used fit 

measure in structural equation modeling: 

𝑅𝑀𝑆𝐸𝐴 = √𝑚𝑎𝑥 {
⁡(𝜒2 − 𝑑𝑓, 0)

𝑑𝑓(𝑛 − 1)
} 

 

The RMSEA is the square root of the normalized 

mean non-centrality parameter, given through 

(𝜒2 − 𝑑𝑓)/(n-1), per degree of freedom. The 

noncentrality parameter is an estimate of the 

squared distance between a model and data. 

Because the degrees of freedom are the number of 

dimensions in which data can differ from a model 

after its parameters were estimated, the RMSEA 

serves as an average measure of lack of fit per 

dimension of potential lack of fit. 

 

When the chi-square is less than the degree of 

freedom, the RMSEA is set to zero. In the current 

study, the RMSEA based on both the Andersen’s 

LR test and the Fischer and Scheiblechner’s S 

statistic is investigated. If the Rasch model holds, 

the RMESA should be near zero. 

 

Results 

 

Table 1 show the simulation results in the null 

hypothesis condition where there is no DIF, i.e., 

when the data fit the Rasch model perfectly. Table 

2 shows the results where there are 8 DIF items. 
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The tables show that most of the statistics depend 

on sample size. Only 
𝜒2

𝑑𝑓
 for the Andersen’s LR 

test is robust against sample size but it is sensitive 

to test length. In Baghaei, Yanagida, and Heene 

(2017), to be on the safe side, we set 68% 

confidence intervals for the χ2/df values. Further 

examinations revealed that those criteria were 

more stringent than Andersen’s (1973) LR test. 

That is, when the Rasch model fits according to 

the LR test it does not fit according to χ2/df values 

set on the basis of 68% confidence intervals. 

Therefore, modified criteria based on 95% 

confidence intervals are suggested in this study 

(Table 3). To compute the suggested fit value you 

do not need a new Rasch model computer 

program. If your software performs Andersen’s 

LR test, then just divide the chi square value by 

the relevant degrees of freedom.     

 

Purya Baghaei, Takuya Yanagida, Moritz Heene,  
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Table 1. Simulation Results of the Null Hypothesis Conditions 
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Table 2. . Simulation Results of the Alternative  Hypothesis Conditions with 8 DIF Items 

 

Table 3 

Modified cut-off values for Andersen’s χ2/df value 

for different test lengths 

 
 

 

 

 

 

 

 

Rasch-related Coming Events 
 

July 31-Aug. 3, 2017, Mon.-Thurs. Joint 

IMEKO TC1-TC7-TC13 Symposium, Rio de 

Janeiro, Brazil, www.imeko-tc7-rio.org.br  

Aug. 7-9, 2017, Mon-Wed. In-person workshop 

and research colloquium: Effect size of family 

and school indexes in writing competence 

using TERCE data (C. Pardo, A. Atorressi, 

Winsteps), Bariloche Argentina.  

Aug. 7-9, 2017, Mon-Wed. PROMS 2017: 

Pacific Rim Objective Measurement 

Symposium, Sabah, Borneo, Malaysia, 

www.proms.promsociety.org/2017/ 

Aug. 10, 2017, Thurs. In-person Winsteps 

Training Workshop (M. Linacre, Winsteps), 

Sydney, Australia. 

www.winsteps.com/sydneyws.htm 

 

 

 

http://www.imeko-tc7-rio.org.br/
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http://www.winsteps.com/sydneyws.htm
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An Online Multidimensional 

Computerized Adaptive Testing 

(MCAT) Module Using APP 
 

The development of item response theory (IRT) in 

conjunction with the advances in computer 

technology has made computerized adaptive 

testing (CAT) feasible and applicable (Wang & 

Chen, 2004). Many unidimensional CATs 

(UCAT) have been discussed in literature (Chien 

& Djaja, 2015; Halkitis, 1993/1996; Linacre, 

2006; 1998; Lunz & O'Neill, 1998; Raîche, 

Blais,& Riopel, 2006).  

 

Furthermore, the Multidimensional Random 

Coefficients Multinomial Logit Model 

(MRCMLM) has been proposed to capture the 

complexity of modern assessment (Adams, 

Wilson, & Wang, 1997; Wang & Chen, 2004). The 

merger of these two (i.e., MRCMLM and CAT) is 

called multidimensional computerized adaptive 

testing (MCAT; Segall, 1996). Thus, we can 

consider using MCAT to simultaneously estimate 

person measures for an inventory consisting of 

multiple subscales. 

 

In tradition, we do CAT for each subscale 

separately, not like MCAT on all subscales jointly. 

In general, MCAT is more efficient than separate 

unidimensional CAT in terms of reducing test 

length (Wang, 2010). 

 

As with all forms of web-based technology, 

advances in mobile communication technology 

are rapidly increasing. So far, however, no online 

MCAT assessment has been published in journals.  

 

An online MCAT using maximum likelihood 

(ML) estimation with the Newton-Raphson 

iteration method was programmed by authors to 

administer the 3-domain Maslach Burnout 

Inventory (Lee, Chien, Yen, 2013) here. By 

scanning a QR-code, the first item randomly 

selected appears on the smartphone (Figure 1). 

Person domain scores can be estimated via MCAT 

(Figure 2). In MCAT process, the measurement of 

standard error (MSE) for each subscale decreased 

when the number of the items increased (Figure 

3). A snapshot of an unexpected response with an 

asterisk (*) with |Z|  2.0 are shown on a smart 

phone (Figure 4). The link to the MCAT video 

demonstration is https://youtube/Wc_9Tov-__w  

for interested readers. 

 

Tsair-Wei Chien, Chi Mei Medical Center, Taiwan 

Wen-Chung Wang, The Hong Kong Institute of 

Education, Hong Kong, China   
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Figure 1. By scanning a QR-code, the first item 

randomly selected appears on the smartphone. 

 

 
Figure 2. Person domain burnout scores are 

estimated via MCAT 

 
Figure 3. Snapshots of MCAT is shown on a 

smart phone. 

 

 
Figure 4. Snapshots of an unexpected response 

with an asterisk (*) when |Z|  2.0 shown on a 

smart phone. 

 

International Metrology 

Conference in Paris, 19-21 

September 
 

A number of measurement presentations of 

interest will be given at the upcoming 18th 

International Metrology Conference in Paris, 

France, this September. The full program is 

posted at http://cim2017.com/files/pdf/C 

IM2017-Programme-GB-Web_2.pdf. 

Rasch's probabilistic models for measurement 

offer a basis for metrological traceability to new 

unit standards in education, health care, and other 

fields (Fisher, 2009; Fisher & Stenner, 2016; 

Mari, Maul, Torres Irribara, & Wilson, 2016; 

Mari & Wilson, 2014, 2015; Pendrill, 2014; 

Pendrill & Fisher, 2013, 2015; Wilson, 2013). 

Several CIM 2017 presentations will expand on 

this theme. 

 

Leslie Pendrill, past chair of the European 

Association of National Metrology Institutes, will 

speak on person-centered health care quality at 

http://cim2017.com/files/pdf/CIM2017-Programme-GB-Web_2.pdf
http://cim2017.com/files/pdf/CIM2017-Programme-GB-Web_2.pdf


Rasch Measurement Transactions 31:1  Summer 2017 1627 

15:50 on Wednesday 20 September in session 

S10. 

A poster on psychometric metrology by William 

Fisher, and a poster by Matt Barney and Fisher on 

a psychometric metrology approach to AI data 

analytics, will be presented 13:45 to 15:15 on 

Wednesday 20 September. 

That same poster session also includes work on 

emotion measures by  R. Taymanov and K. 

Sapoznikhova from the Mendeleyev Institute in 

St. Petersburg; who, along with Barney, Pendrill, 

Fisher, and Jack Stenner, participated in the 

IMEKO Joint Symposium in Berkeley last year. 

Fisher and Stenner have a podium presentation on 

uncertainty in metrology and psychometrics in 

CIM session S12 at 10:40 AM on Thursday 21 

September. 

Also of note is a poster session on metrology 

education on Tuesday 19 September. 

Conversations on integrated assessment and 

instruction with the authors of these presentations 

could open up productive new collaborations. 

 

Note from SIG Chair 
 

Greetings Rasch Enthusiasts! 

 

I’d like to take a moment to remind you of the 

upcoming AERA Annual Meeting proposal 

deadline: July 24, 2017, at 11:59 PM Pacific 

Time. We look forward to your proposals to the 

Rasch SIG as we would love to have you present 

in one of our sessions. Remember that we are 

graduate-student friendly. Encourage those 

students that you are working with in an advising, 

teaching or mentoring capacity (including 

summer internship or post-doc experiences) to 

submit their work. Please give a round of thanks 

in advance to our 2018 Rasch SIG Program Co-

Chairs, Liru Zhang and Eli Jones, and to those of 

you who volunteered to be proposal reviewers.  

 

Please join me in congratulating the recipient of 

the 2017 Georg William Rasch Early Career 

Publication Award, Adrienne Walker. Her 

nomination noted the contribution of her 2016 

Journal of Applied Measurement paper, 

“Exploring Aberrant Responses Using Person Fit 

and Person Response Functions”. The picture 

below shows Adrienne (left) and Leigh (Rasch 

SIG Chair) posing with the award, which was 

announced during the Rasch SIG Business 

Meeting. 

 

 
 

In addition to the presentation of the award to 

Adrienne Walker and Stefanie Wind’s 

presentation at the Rasch SIG Business Meeting, 

the attendees discussed how to remain relevant 

and visible within AERA and to the outside world. 

Suggestions for improving the visibility of the 

SIG and Rasch Measurement and adding to what 

we offer to members when they attend AERA 

included the possibility of proposing half-day 

workshops through AERA on various Rasch 

models and data analysis. Discussions also 

centered around working more closely with 2018 

IOMW organizers, Andrew Maul and Ronli 

Diakow. Several key financial initiatives were 

discussed. Pricing for the current hosting 

company for the Rasch SIG website (raschsig.org) 

has been renegotiated, resulting in significant cost 

savings. We are working with AERA 

management to evaluate using their SIG website 

hosting feature, a service already included in the 

yearly management fees that we pay to the SIG. 

Decreasing the current amount of the honorariums 

that go with the Georg William Rasch Early 

Career Publication Award and the Benjamin 
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Drake Wright Award was discussed, with 

agreement that these honorariums should be 

reduced to make them more aligned with the 

amount that IOMW and other SIGs award. 

Combining with other SIGs, such as the Survey 

Research SIG or Assessment in Higher Education 

SIG, to have an off-site social during the Annual 

Meeting instead of part of the Business Meeting 

was also suggested. Additionally, if your 

institution or company might be interested in 

partially sponsoring the awards or socials, please 

let me know.    

 

As always, I would like to extend the opportunity 

for Rasch Measurement SIG members to reach 

out to me with questions, concerns or suggestions 

regarding the SIG. I look forward to hearing from 

you.  

 

Sincerely,  

 

Leigh M. Harrell-Williams 

Rasch Measurement SIG Chair 

 

Profiles in Rasch Measurement 
 

 
 

My name is Sarah Thomas and I recently received 

my PhD in quantitative psychology from the 

University of Virginia. I first became interested in 

measurement while taking a psychology course as 

an undergraduate. The idea that a person could be 

represented as a series of scores fascinated me. 

These interests led me to pursue a career in 

psychology, specializing in applications of 

measurement models to common problems and, 

more recently, the detection of cheating on high-

stakes standardized tests.  

 

The contamination of measurement data through 

cheating is a shockingly common problem that 

has led to an explosion of research in this area. My 

introduction to the field of cheating detection 

occurred in 2013 when I agreed to participate as a 

team member in the “Test Fraud Detection 

Challenge.” For this challenge, I was part of a 

team that analyzed data for evidence of test fraud 

and presented our findings at the Conference on 

Test Security. Our objectives were to identify 

items that were leaked online and examinees who 

may have accessed those items. We decided to 

investigate Rasch model estimates, Classical Test 

Theory statistics, and cluster analyses. After the 

conference, we were given information on which 

items were discovered in the online leak. We 

discovered that we had correctly classified 64 of 

the 65 items. I was hooked. The detection of 

cheating was a perfect place for me to apply my 

knowledge of psychometrics to an important, real-

world problem.  

 

My recent work combines techniques from 

machine learning with estimates from Rasch and 

Item Response Theory models to detect leaked 

test items. This project uses data from a testing 

company in which some items were discovered to 

be compromised in screenshots and notes. 

However, the quality of these suspected item 

categories is unknown, so I designed, and am 

currently running, an experiment to mimic an item 

leak in the lab. The greatest benefit of this 

experiment is that the correct status of items and 

examinees will be known, unlike in most cases of 

test fraud, allowing a direct evaluation of the 

accuracy of various statistical methods for 

identifying test fraud to be assessed. I am 

particularly interested in assessing the usefulness 

of Rasch model estimates in detecting test fraud, 

as situations of test fraud represent a potential 

violation of the assumptions and the misfit of the 

data to the model may be indicative.  

 

I think it is imperative that we, as a field, continue 

to focus on achieving good, objective 

measurement and informing others about the 

Rasch model. I also think that increased attention 

to test security issues, particularly for measures 

that are associated with high-stakes decisions, 

should be a focus as we move forward. 

 


