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Overview of The Issue 
 
In this issue of RMT, we have included one 
research note, a book review, and several 
announcements that may be of interest to the 
Rasch community. 
 
The issue begins with a research note from 
David Andrich on the Precision of 
measurement, the unit, and Fisher’s 
information function in the Rasch and Gauss 
distributions. Following the research note is 
a review of the fourth edition of Applying 
the Rasch Model.  
 
Then, we provide two announcements that 
may be of interest to our readers. The first is 
a call for nominations for Rasch 
Measurement SIG Officers and (due NOW) 
and a call for the Rasch Measurement SIG 
Benjamin Drake Wright Senior Scholar 
Award. The second announcement provides 
information about the non-profit 
organization Women in Measurement and a 
link to register for a mentoring circle for 
women of color.  
 

As always, we welcome your contributions 
to the next issue for RMT. We would 
appreciate receiving your research note, 
conference or workshop announcement, etc. 
by January 1, 2022. Please contact us at the 
email addresses below if you wish to submit 
something for inclusion. 
 
Sincerely, 
 
Your RMT Co-editors, Leigh and Stefanie  
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Precision of measurement, the 
unit, and Fisher’s information 

function in the Rasch and 
Gauss distributions  

 

This note follows up on Andrich (2020a) in 

which I elaborated some properties of the Rasch 

measurement distribution for ordered categories 

in which the thresholds were equidistant, and 

therefore, the ordered categories are equivalent 

to a common unit of a typical measuring 

instrument. In particular, I drew attention to the 

equivalences between it and the Gauss (Normal) 

distribution of errors of replicated 

measurements. 

The Rasch distribution of concern here takes the 

form:  

, 

     (1) 

where: 

(i) Xni is a random variable of the 

measurement as a unit count xni = 0, 

1, 2, …, m of object n with 

parametric measure βn when 

measured with instrument i with 

origin δi and unit Δi = τxi – τ(x – 1)i,  

(ii)  τxi is the threshold at which the 

conditional probability of x or x – 1  

is 0.5 and ∑ 𝜏!" = 0#
!$% ,  

(iii) mi is the range of the instrument, 

and  

(iv) γni is simply the sum of the 

numerators ensuring that that P{xni} 

is a probability distribution. The 

term measure denotes the theoretical 

or hypothesized magnitude of an 

object and the term measurement 

denotes the value obtained from a 

measuring instrument as an estimate 

of the measure. 

It is stressed that the distribution in Eq. (1) is an 

implied distribution of statistically independent 

replications of measurement of the same object n 

with the same instrument i. The empirical 

distribution of such replications is inferred from 

estimates from the analysis of a set of data with 

the distribution. The count of the number of 

units as a measurement, xni = 0, 1, 2, …, m, is 

referred to as a unit count. The count xni 

indicates that the object’s magnitude is deemed 

to have exceeded x thresholds and failed to 

exceed mi – x thresholds of the instrument which 

has mi thresholds. Clearly, the observed 

measurement is an approximation of the 

hypothesized measure of the object. 

Because this note deals only the with the Rasch 

distribution of replicated measurements of a 

single object, the subscript n is dropped in the 

following exposition. Recall that in the Rasch 

distribution, the unit count xi = 0, 1, 2, …, m is a 

sufficient statistic for the parametric 

measurement β, which implies that for every unit 

count xi there is a parametric measurement βxi. 

Specifically, the value of βxi for any value of xi = 

{ } exp{ ( ) / 2 ( )}/xi ni i i n i nip P x x m x x b d g= = - D + -
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0, 1, 2, …, m is a solution to the first derivative 

of the logarithm of the likelihood function, the 

probability of Eq. (1), and set to zero to obtain 

the value of βxi which maximizes the probability, 

that is: 

, 

 ,  (2) 

with finite values for xi = 0, mi  extrapolated—

their respective values technically being . 

Also recall that any measurement using a typical 

instrument is discrete in the unit of the 

instrument, for example, a parametric 

measurement of 37.5 centimeters in length, 

measured with an instrument which measures to 

the nearest 0.5 cm, is a unit count of 75 half-

centimeters. In this case the operational unit of 

the instrument is 0.5 cm relative to the standard 

magnitude of 1cm. The discrete nature of 

measurements is explicit with modern electronic 

instruments.  

In physical measurement, the discrete unit count 

xi in the operational unit and the parametric 

measurement βxi are generally, and helpfully, 

blurred. Thus, the unit count of 75 in the above 

example would be reported immediately as 37.5 

cm without reference to the 75 half centimeters. 

Of course, the actual measure β of the object is 

taken as a real number referenced to some 

standard, and is to be estimated. In the Rasch 

distribution the discrete integer, unit count xi = 

0, 1, 2, …, m (say 75 half centimeters) is 

distinguished from the parametric measurement 

βxi. This note follows the consequences of 

having this distinction from the perspective of 

precision of measurement as defined by the 

Fisher information function in relation to the 

magnitude of the unit.  

 

Three properties of the Rasch distribution 

In the derivation of the Gauss distribution, to 

which we return below, Gauss noted that the 

symmetric quadratic form only holds provided 

the object is sufficiently well aligned to the 

range of the instrument that probabilities of 

measurement near the extreme counts xi = 0; xi= 

mi vanish (Eisenhart, 1983b). In the relationship 

explained in this note, the same relative 

alignment is required. Then if the alignment 

ensures that the probabilities near the extremes 

of the instrument’s range vanish, the following 

three properties of Eq. (1) hold (Andrich, 2020a; 

2020b).  

First, the variance of the unit count, V[Xi], is the 

inverse of the operational unit Δi: 

.     (3) 

Second, there is a range of parametric 

measurements βxi in which βxi – βx – 1, i =   Δi. This 

is consistent with typical measurement and is the 

basis of the results shown below.  

Third, the Rasch distribution is identical in the 

same range and for the same instrument i as the 

discrete Gauss distribution of the form  

ln P{ } [ ] 0i
i i

x x E X
b

¶
= - =

¶

0,1,2,... 1i ix m= -

±¥

[ ] 1/i iV X = D
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,   (4) 

where μi = E[Xi] and 𝜎&' = V[𝑋"], and γi is the 

sum of the numerators. The values μi,	𝜎&' are the 

same as those of the complementary continuous 

Gauss distribution. 

 

Distributions of replicated measurements from 

two instruments with different units 

Eq. (3) may give the impression of a paradox - 

that the greater the unit, Δi, the smaller the 

variance V[Xi], and therefore the smaller the 

unit, the worse the precision of measurement. 

However, the paradox is resolved by realizing 

that the smaller value of the variance is also 

expressed in the greater unit. This resolution is 

shown below. 

Table 1 shows the equivalent measurements with 

two instruments (i = 1, 2), in which Δ1 = 1; m1 = 

10 and Δ2 = 0.5Δ1; m2 = 20 over the same range 

of the variable. Instrument 1 is taken as the 

standard which provides a frame of reference to 

study the effects of a different unit from 

Instrument 2. Table 1 also shows the maximum 

likelihood values of the measurements βx1, βx2   

calculated to a convergence criterion of 0.0001 

and the probabilities of the unit counts and 

corresponding parametric measurements when 

the object’s measure is β = 0.5 on the common 

metric. The arbitrary origin for the parametric 

measurements is set to δi = 0. The Table shows, 

in italics, the range of parametric measurements 

from both instruments where βxi – βx – 1 = Δi; it 

shows that outside this range pxi = 0. It also 

shows that within this range the probabilities are 

symmetrical. Unlike typical tables of 

measurements in which the unit count and the 

parametric measurement are blurred, these are 

distinguished in Table 1. It is emphasized that 

Table 1 shows the distribution of replicated 

measurements of the measurement of the same 

object by each of the two instruments. We now 

examine the theoretical means and variances, 

(E[X1]; V[X2]) of the unit counts, followed by the 

theoretical means and variances of the 

parametric measurements, (E[β1]; V[β2]).
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Table 1. Distributions of unit counts and parametric measurements from two instruments with units 
Δ1 = 1, Δ2 = 0.5 Δ1, range m1 = 10, m2 = 20 for a measure β = 0.5 on a common metric. 

 
 

      
 0 -5.5 0 -5.9 0.00 0.00 
   1 -4.8  0.00 
 1 -4.2 2 -4.1 0.00 0.00 
   3 -3.5  0.00 
 2 -3.0 4 -3.0 0.00 0.00 
   5 -2.5  0.00 
 3 -2.0 6 -2.0 0.02 0.00 
   7 -1.5  0.01 
 4 -1.0 8 -1.0 0.13 0.03 
   9 -0.5  0.10 
 5 0.0 10 0.0 0.35 0.22 
   11 0.5  0.28 
 6 1.0 12 1.0 0.35 0.22 
   13 1.5  0.10 
 7 2.0 14 2.0 0.13 0.03 
   15 2.5  0.01 
 8 3.0 16 3.0 0.02 0.00 
   17 3.5  0.00 
 9 4.2 18 4.1 0.00 0.00 
   19 4.8  0.00 
 10 5.1 20 5.9 0.00 0.00 

 5.5 0.5 11.0 0.5   

 1.0 1.0 2.0 0.5   
 
 

Expected values and variances of the unit 

counts 

First, consider the expected values and variances 

of the unit counts (xi, m1) from Instrument 1, unit 

Δ1 = 1.0. The E[X1; Δ1] = 5.5 is slightly greater 

than the middle of the range (0, 10), which 

accounts for β = 0.5 being slightly greater than 

the origin of 0.0. The value β = 0.5 for the 

measure of the object was taken for convenience 

of exposition; it could be any real number within 

the relevant range. In this special case, which we 

take as the standard instrument, V[X1; Δ1] = 1.0, 

which is also its inverse and the unit.  

Second, consider the expected values and 

variances of the unit counts (x2, m2) from 

Instrument 2, unit Δ2 = 0.5. The E[X2; Δ2] = 11.0  

is slightly greater than the middle of the range 

(0, 20), which again accounts for β = 0.5 being 

slightly greater than its origin 0, and is also 

double the E[X1; Δ1] = 5.5 for Instrument 1. This 

1 1( , )x m 1 1( , )xb D 2 2( , )x m 2 2( , )xb D 1( )x xp b 2( )x xp b

[.]E
[.]V
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is consistent with the unit of Instrument 2 being 

half that of Instrument 1. The V[X2; Δ2] = 2.0 is 

exactly the inverse of the unit, Δ2 = 0.5, that is, 

The V[X2; Δ2] = 2.0 = 1/ Δ2.  

Thus, the variance of the unit count in the 

smaller unit is greater than the variance of the 

unit count in the larger unit, which as noted 

earlier, could give the impression that the error 

variance is greater with a smaller unit. However, 

it has to be appreciated that the greater variance 

is in terms of the smaller unit, and when 

referenced to the same metric, the smaller unit 

provides a smaller variance. This is illustrated in 

Figure 1 where the two distributions are 

referenced to the same metric of the parametric 

measurement. It can be seen that the distribution 

of the unit counts from Instrument 2 with the 

smaller unit is narrower than the distribution 

with Instrument 1 with the larger unit.  

Note that with the standard, Instrument 1 with 

Δ1= 1, no measurement has the value of the 

object’s measure β = 0.5. With the measure 

taken to be a real number, and a measurement 

discrete, this feature is typical. In contrast, that a 

measurement can be a value of the measure with 

Instrument 2 is contrived for convenience.

 
Figure 1. Distributions of measurements x  of two instruments with units Δ1=1, Δ2=0.5,   for a 
measure of β = 0.5.  

Expected values and variances of the 

parametric measurements 

First consider the expected values and variances 

of the parametric measurements, (β1, Δ1) from 

Instrument 1, unit Δ1 = 1.0. E[β1; Δ1] = 0.5  is 

exactly the measure of the object, β = 0.5. This 

is consistent with maximum likelihood estimate 

within the range where the Rasch distribution is 

identical to the Gauss distribution and would be 

the case no matter the value of β. The V[β1; Δ1] 
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= 1.0 is exactly the size of the unit, but unlike 

the variance of the unit counts, and as seen 

below, is not a special case.  

Thus second, consider the expected values and 

variances of the parametric measurements (β2, 

Δ2) from the Instrument 2, unit Δ2 = 0.5. E[β2; 

Δ2] = 0.5   again, exactly the measure of the 

object β = 0.5. Perhaps of more interest and 

novelty, and the point of this note, is that the 

variance V[β2; Δ2] = 0.5 = Δ2, exactly the size of 

the unit. In this case, the smaller the unit, the 

smaller the variance, indicating that the smaller 

unit gives greater precision of the parametric 

measurements.  

Figure 2 shows the distributions of the 

parametric measurements, (βx1, βx2), from the 

two instruments referenced to the same metric. It 

can be seen that the distribution of Instrument 2 

with the smaller unit is narrower than that of 

Instrument 1 with the larger unit.

 

Figure 2.  Distributions of parametric measurements βx of two instruments with units Δ1 = 1, Δ2 

= 0.5 for a measure of β = 0.5.  

Fisher’s information function 

The equality between V[β2; Δ2] and Δ2 can be 

explained by the Fisher information function, 

I(β). For the Rasch distribution, derived from an 

equivalent definition of I(β) as that given by 

Fisher (Samejima, 1969), I(β) for instrument i  is 

given by                                                  

.               (5) 

The inverse of the information function, 1/ I(β), , 

gives the variance of the parametric 

measurements V[βi], whose square root provides 

2

2

ln P{ }( ) [ ]i
i i

xI V Xb
b

¶
= - =

¶
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a standard error of the estimate of β from an 

analysis of data, that is V[βi] = 1/I(βi) = 1/V[Xi]. 

However, from Eq. (3), V[Xi] = 1/Δi. Therefore:  

.             (6) 

 

Eq. (6) shows a clear relationship between the 

precision of parametric measurements and the 

unit of the instrument, one which is elegant and 

aesthetically pleasing.  

 

Improving precision by increasing the sample 

size or by reducing the operational unit.  

The result in Table 1 is consistent with Eq. (6). 

In general, relative to a standard unit of Δs from 

Instrument s, if the unit is Δn = Δs /n from 

Instrument n, then: 

. (7) 

 

Now it is well known that the variance of the 

mean of a distribution, which is according to a 

number of criteria the best estimate of the 

parametric measure of an object and resulted in 

the Gauss distribution, is inversely proportional 

to the sample size, that is  

.             (8) 

 

Thus in the above development, to increase the 

precision of the estimate of a measure relative to 

a standard unit, taking the mean of a sample size 

of n measurements with the same instrument is 

identical to reducing the size of the operational 

unit of the instrument by 1/n. This relationship is 

again elegant and aesthetically pleasing. 

 

Some connections to the development of the 

Gauss distribution 

The development of the Gauss distribution was 

set in the context of obtaining the best estimate 

of the measure of an object in the presence of a 

distribution of measurements.  

Laws of error, i.e., probability 

distributions assumed to describe the 

distribution of the errors arising in 

repeated measurement of a fixed quantity 

by the same procedure under constant 

conditions, were introduced in the latter 

half of the eighteenth century to 

demonstrate the utility of taking the 

arithmetic mean of a number of 

measurements or observed values of the 

same quantity as a good choice for the 

value of the magnitude of this quantity on 

the basis of the measurements or 

observations in hand. (Eisenhart, 1983a, 

p. 1). 

This work exercised the best mathematical 

minds of the time, including Lagrange and 

Laplace, and culminated with the Gauss 

distribution.  

Nonetheless, Thomas Simpson (1710–

1761) wrote to the president of the Royal 

[ ]i iV b = D

[ ; ] / [ ; ] /n n n s s sV n V nb bD = D = D = D

[ ; ] [ ; ] /s s s sV V nb bD = D
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Society in March 1755 that some persons 

of considerable note maintained that one 

single observation, taken with due care, 

was as much to be relied on as the mean 

of a great number. (Eisenhart, 1983a, p. 

1). 

From the analysis of the Rasch distribution 

above, which is identical to the discrete Gauss 

distribution, and whose mean and variance are 

the same as the complementary continuous 

Gauss distribution, we can formalize the 

equivalence of one measurement taken with due 

care and the mean of measurements. 

Specifically, if the operational unit is reduced by 

1 nth, one such measurement is identical in 

precision to that obtained by the mean of n 

original measurements. This of course is a 

theoretical relationship obtained from the 

equivalence of the Gauss and Rasch 

distributions, both of which were derived 

theoretically and not to account for any 

particular data set.  

In addition, with some adaptation to more 

conventional notation, Eisenhart (1983b, p.2) 

writes regarding Gauss’s derivation: 

whence 

  

and k must be positive if the 

corresponding value of the joint 

probability density… is to be maximum. 

… Setting k = h2 … the desired law of 

error is seen to be 

, 

 

in which, Gauss pointed out [29, art. 

178], ‘‘the constant h can be considered 

as the measure of precision … of the 

observations. 

From the connections with the Rasch 

distribution above, and Eq. (4), it can be seen 

that k = h2 = (1/2σ2) = (1/2)Δ, is a measure of 

precision, it being half the operational unit of the 

instrument. Moreover, from the motivation of 

the Rasch distribution, k = h2 = (1/2)Δ must be 

positive because Δ = τk – τk – 1 is the directed 

distance, the unit, between successive thresholds 

of the instrument. It is emphasized that these 

results hold when the measure of the object is 

well within the range of the instrument which in 

turn ensures that the probabilities of 

measurements close to the extremes of the range 

of the instrument are zero, a condition required 

for the application of the Gauss distribution

 
 

2( ) exp( 1/ 2) ( )f x c k xµ µ- = - -

2 2( ) / ( )exp( ( )f x h h xµ p µ- = - -

x-¥ < < ¥
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Table 2.  

Means of the means and variances across each of five 
instruments, and the estimate of the respective units, for 

1000 replicated measurements of each object, . 

Instrument 
  

    

   

   

 

 

Figure 3. Distribution of simulated 1000 replicated measurements with one instrument, Δ = 
0.5, m = 20, and the continuous Gauss distribution, μ = 11.0, σ2 = 1/Δ = 2.0; σ = 1.4142. 

 

 

An example of an explicit distribution  

To show the connection with data based on the 

theoretical distributions above, data were 

simulated according to Eq. (1) for 1000 

replications of an object with measure β = 0.5 

with an instrument Δ1 = 1, m1 = 10 and another 

with Δ2 = 0.5, m2 = 20 according to the Rasch 

distribution of Eq. (1). The simulation for each 

instrument was repeated with four more 

instruments. Table 2 shows the summary 

0.5b =

1 11, 10mD = = 2 20.5, 20mD = =

[ ];i iE X X 5.5; 5.490 11.0; 11.029

2[ ];i iV X S 1.0; 0.988 2.0; 1.949

ˆ;i iD D 1.0; 1.013 0.5; 0.514
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statistics of the means and variances across the 

five distributions for each kind of instrument. 

Without studying the sampling distributions, it is 

evident that the observed values are close to the 

theoretical values, and that the unit in particular 

is recovered well.  

Finally, to illustrate the relationship of the above 

properties of the Rasch distribution to the Gauss 

distribution, Figure 3 shows the empirical 

distribution of one of the simulations of 1000 

replications of an instrument with Δ2 = 0.5, m2 = 

20, and the continuous Gauss distribution with 

the theoretical values of μ2 = 11.0, and σ2
2 = 

1/Δ2= 2.0. and. It is clear that the Gauss 

distribution overlaps, virtually fully, with the 

empirical, discrete Rasch distribution.  
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Review of Applying the Rasch 
Model: Fundamental 

Measurement in the Human 
Sciences, Fourth Edition 

 
It is my pleasure to review the latest edition 
of Applying the Rasch Model (ARM). With 
guidance from my graduate school advisor 
George Engelhard, I learned most of the 
fundamentals of Rasch measurement theory 
from the second edition of ARM. Since 
then, I used the third edition of ARM as one 
of the required texts in my own graduate 
seminar on Rasch measurement theory in 
2016. The fourth edition of ARM (ARM4) 
shares the same excellent features as the 
previous editions. Maintaining the 
conversational and accessible tone that 
characterized previous editions, ARM4 
provides a gentle yet compelling 
introduction to Rasch measurement theory 
that is accessible to beginners while also 
being thorough enough to satisfy the 
curiosity and appease potential Rasch-
criticisms of advanced researchers from a 
variety of methodological and theoretical 
backgrounds. The new features in ARM4 
make it an even more comprehensive 
resource for new researchers and 
experienced methodologists alike. 
 
In the following paragraphs, I describe my 
observations and reflections on each chapter 
in ARM4. I conclude the review with some 
thoughts about the book as a whole 

 
 
 
 

Reflections on ARM4 Chapters 
 
Chapter 1 (Why Measurement is 
Fundamental) and Chapter 2 (Important 
Principles of Measurement Made Explicit) 
introduce readers to the fundamental 
principles that characterize measurement in 
the physical sciences that are required, but 
often overlooked, for measurement in the 
social and behavioral sciences. In this new 
edition, Chapter 1 emphasizes the definition 
and use of quantitative scales in 
psychological sciences that will help readers 
bridge their understanding of levels of 
measurement from statistics courses to 
measurement in a theoretically sound way. 
The explicit consideration of fundamental 
principles using concrete, accessible 
examples provide readers with a solid 
theoretical foundation on which to build 
their understanding of additional theoretical 
and technical aspects of Rasch measurement 
theory. Reading the new versions of these 
two chapters ARM4 reminded me that these 
are chapters that I should read and refer to 
regularly to reaffirm understanding of the 
fundamental principles of measurement. 
   
Chapter 3 (Basic Principles of the Rasch 
Model) introduces readers to Rasch 
measurement theory using examples and 
step-by-step demonstrations. The pathway 
analogy and high jump examples are useful 
and memorable tools for understanding and 
visualizing key Rasch measurement 
outcomes (model predictions, estimates, 
precision, and fit). I especially appreciated 
the deliberate consideration of misfit and 
what it means in both a theoretical and 
practical sense. In addition, the discussion of 
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reliability indices within the Rasch 
framework is especially important for 
readers who are familiar with psychometric 
methods but new to Rasch. 

 
Chapter 4 (Building a Set of Items for 
Measurement) walks the reader through an 
application of Rasch measurement theory 
using an example from Bond’s Logical 
Operations Test (BLOT), which is a 
dichotomously scored test of cognitive 
development for young adolescents. The 
demonstration reinforces principles from 
earlier chapters while demonstrating how to 
interpret major components of a Rasch 
analysis of dichotomous data. Among the 
discussions in this chapter, I particularly 
appreciated the careful treatment of guessing 
with examples that demonstrate how it can 
be detected and understood from a 
measurement perspective. 
 
Chapter 5 (Invariance: A Crucial Property 
of Scientific Measurement) builds on earlier 
discussions of invariance, with an emphasis 
on practical consequences of invariance for 
practical psychometric tasks such as linking 
and equating, including vertical scaling and 
differential item functioning (DIF). I 
particularly appreciated the connection to 
Classical Test Theory methods in the 
discussion of logits and correlations, and the 
practical nature of the illustrations and 
examples in this chapter.  
 
Chapter 6 (Measurement using Likert 
Scales) was the first chapter to focus on 
polytomous (rather than dichotomous) data. 
This chapter is one that I found particularly 
interesting given my own research and 

teaching interests, and it is one that I will 
recommend to my students and collaborators 
who work with Likert-type response data. 
The computer anxiety questions example in 
the beginning of the chapter made clearly 
demonstrated the limitations of typical 
treatment and interpretation of Likert-type 
responses in “mainstream” survey research. 
The new example data are from the 
Instrumental Attitude toward Self-
Assessment Questionnaire (IASQ), which 
includes a four-category rating scale. The 
four-category scale is likely to be more 
similar to readers’ own Likert-type response 
data than the original three-category scale 
example from previous editions. In addition, 
the step-by-step walkthrough of the 
polytomous Rasch model analysis of these 
data helps readers understand how to 
interpret key outcomes from the model 
(especially thresholds). Importantly, Chapter 
6 considers practical issues such as sample 
size and dimensionality assessment, while 
also helping readers understand the 
theoretical implications of their design and 
analytic decisions. 
 
Chapter 7 (The Partial Credit Rasch Model) 
extends the introduction to the polytomous 
Rasch model from Chapter 6 to the more-
flexible Partial Credit Model (PCM). The 
authors highlight important features of the 
PCM with a theory-driven, purposive 
example from Piagetian cognitive 
developmental data. The authors walk 
through an example analysis step by step to 
demonstrate the features and benefits of the 
PCM approach to analyzing the data. Like 
Chapter 6, the extended understanding 
section of Chapter 7 included practical 



 

Rasch Measurement Transactions 34:3 Fall 2021 1843 

considerations for evaluating rating scale 
functioning (elaborated in Chapter 11) and 
dimensionality using Rasch Principal 
Components Analysis (PCA; also discussed 
in later chapters). The concrete illustration 
and discussion of Rasch PCA is an excellent 
reference for this often-misunderstood 
analysis. 
 
Chapter 8 (Measuring Facets Beyond Ability 
and Difficulty) introduces the Many-Facet 
Rasch Model (MFRM) using example data 
from a rater-mediated writing assessment in 
the United States (originally published by 
Engelhard in 1992). Like previous chapters, 
Chapter 8 includes a step-by-step 
demonstration of the analysis and 
interpretation of the model results, with 
attention to both theoretical and practical 
issues. I appreciated the direct comparison 
of the MFRM to rater reliability that 
demonstrated how the MFRM can 
supplement this popular and limited index to 
address a variety of concerns in rater-
mediated assessment. The extended 
understanding section of Chapter 8 was also 
focused on rater-mediated assessments—
providing coherence with the earlier parts of 
the chapter. 

 
Chapter 9 (Making Measures, Setting 
Standards, and Rasch Regression) and 
Chapter 10 (The Rasch Model Applied 
Across the Human Sciences) include 
examples of Rasch measurement 
applications that highlight practical issues 
across a variety of contexts. The examples in 
Chapter 9 help readers see how Rasch 
methods can be applied to solve practical 
measurement challenges. Although they are 

important topics that warrant discussion in 
an introductory Rasch text, I thought the 
standard setting and Rasch regression 
examples may be a bit advanced for new 
researchers. Like Chapter 9, the examples in 
Chapter 10 serve as useful references for 
Rasch applications to address practical 
challenges including creating short versions 
of existing instruments, revising existing 
instruments, exploring gains (e.g., growth) 
in items or persons via “racking” and 
“stacking” techniques, and applications to 
classroom assessment. I have personally 
bookmarked the “Analytic Mill” section of 
Chapter 10, where the authors demonstrate 
how Rasch parameters can be used in 
common analyses, including ANOVA, 
HLM, and SEM. I have found myself 
recommending these techniques to students 
when I serve on dissertation committees, 
and I am glad to have a reference to share 
with them for direct guidance. 
 
Chapter 11 (Rasch Modeling Applied: 
Rating Scale Design) is one of my personal 
favorite chapters in ARM4 because of my 
own research and teaching emphases on 
rating scales. The example analyses provide 
context for explicit guidelines for evaluating 
rating scale functioning while 
acknowledging the nuances in this analysis 
and the need for evidence to support 
decisions, such as collapsing categories. In 
addition, the discussion of negatively 
worded items using data from the IASQ 
(from Chapter 6) provides direct and clear 
guidance that helps readers understand the 
theoretical and practical considerations 
associated with such items.  
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Chapter 12 (Rasch Model Requirements: 
Model Fit and Unidimensionality) provides 
direct and clear instruction on fit and 
dimensionality—two topics that are often 
misunderstood in applications of Rasch 
measurement theory, and that are also 
sources for criticism of Rasch-based work. 
In the discussion of fit for individual items 
and persons, numeric and graphical 
illustrations of response patterns make the 
interpretation of infit and outfit statistics 
concrete. In addition, the discussion of 
dimensionality with comparisons between 
Rasch approaches and “traditional” 
approaches (via factor analysis) helps 
readers understand how fundamental 
measurement principles translate to 
considerations of dimensionality. Chapter 12 
also includes a useful consideration of 
multidimensional Rasch models that helps 
readers understand the potential use and 
implications of these models. In addition, 
the R code to support the examples in this 
chapter are a nice supplement that allow 
readers to practice the analyses and interpret 
the results.  

 
Chapter 13 (A Synthetic Overview) is far 
more than a summary of the previous 
chapters. This closing chapter reinforces key 
concepts and themes from earlier in the 
book with extended discussions and 
considerations that reflect both classic 
references and new developments in 
measurement research and practice. In 
particular, the thoughtful comparison 
between CTT and Rasch measurement, the 
discussion of fit, and considerations of 
interval-level scales in relation to the 
requirements for measurement address 

common misconceptions and criticisms that 
surround our work with Rasch measurement. 

 
Appendix A (Getting Started) is a practical 
guide that helps readers conduct a Rasch 
analysis using Winsteps. This Appendix 
walks readers through the analysis from data 
entry to variable interpretation in a concise 
and clear manner that complements the 
content from earlier in the book. Readers 
can use Appendix A as a “quick start guide” 
for proceeding through a Rasch analysis and 
then supplement their interpretation with 
guidance from earlier chapters. An 
annotated resource list at the end of the 
chapter helps readers identify books, 
journals, and other sources that can 
supplement their research using Rasch 
measurement theory. 
 
Appendix B (Technical Aspects of the Rasch 
Model) makes explicit the details that are 
essential to understanding and explaining 
key components of Rasch measurement 
research. This appendix is an accessible 
reference where readers can find direct 
explanations of equations for popular Rasch 
models and tools for evaluating them (e.g., 
reliability and information).  
 
Appendix C (Going All the Way) is a new 
addition to ARM4 that includes a discussion 
of the popular unstandardized Rasch infit 
and outfit statistics. The direct treatment of 
weaknesses of these statistics is essential 
reading that helps readers understand the 
boundaries of these statistics. Appendix C 
also demonstrates methods for testing Rasch 
model requirements using multiple methods, 
including global model-fit tests, 
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Confirmatory Factor Analysis, graphical 
approaches, and Structural Equation 
Modeling. This information is essential for 
measurement students and scholars who 
need to understand how Rasch principles 
align with other popular approaches. 
 
In addition, the tutorials in R using eRm by 
Tara Valladares are a wonderful resource 
that align Rasch research with ever-growing 
interest in R programming.  
 
Conclusions 
 
ARM4 helps readers understand the 
fundamental principles of measurement and 
their role in constructing, evaluating, and 
learning from measurement procedures in 
the social and behavioral sciences. This new 
edition brings Rasch methods into the 
current landscape of quantitative methods so 
that readers understand how Rasch 
measurement theory fits within current 
methodological trends and conversations.  
 
I have whole-heartedly recommended the 
fourth edition of ARM to my doctoral 
advisees, and I plan to use it as one of the 
required texts in my upcoming courses. The 
book is one I keep handy for quick reference 
in my own work. My congratulations and 
sincere thanks to the authors for their 
contribution to Rasch measurement theory 
and practice via ARM4. 

 
Stefanie A. Wind 
The University of Alabama 
 

 

Call for Nominations for 
Benjamin Drake Wright Senior 

Scholar Award 
 
The Rasch Measurement SIG is currently 
accepting nominations for the Benjamin 
Drake Wright Senior Scholar Award. This 
award is presented to an individual senior 
scholar for outstanding programmatic 
research and mentoring in Rasch 
measurement over the course of a career and 
who is still active in Rasch measurement 
research at the time the award is granted. It 
will be offered in 2022. The award is open 
to scholars worldwide. Membership in 
AERA or Rasch Measurement SIG is not 
required of the nominee.  
 
Eligibility Criteria for the Benjamin 
Drake Wright Senior Scholar Award 

 
The Rasch Measurement SIG will bestow 
the Benjamin Drake Wright Senior Scholar 
Award upon a senior scholar who is active 
in Rasch measurement research at the time 
the award is granted (as attested to, for 
example, by research publications of recent 
date or current doctoral advisees) and who is 
nominated by members of the community as 
an exemplar in regard to the following two 
basic criteria. Potential nominees will have:  
 

a. designed and carried out 
programmatic research that 
originates in Rasch measurement and 
helps understand crucial phenomena 
in model definition, parameter 
estimation, fit assessment, construct 
specification, novel applications, the 
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place of Rasch measurement in the 
history and philosophy of science, 
etc., as represented in a corpus of 
writings and research projects that 
have contributed to the theoretical 
development of the field as well as 
having been grounded empirically; 
AND  

 
b. developed the research capacity of 

the field, as attested to by the 
existence of a “school of thought” or 
intellectual heritage associated with 
the scholar’s name, a heritage that 
includes other individuals whom the 
scholar has had a direct influence in 
encouraging and helping become 
productive in Rasch measurement 
research or an identifiable domain of 
Rasch measurement research within 
which the nominee’s constructs and 
results are used regularly by other 
researchers. 
 

The Rasch Measurement SIG recognizes 
that other features of a person’s work might 
add to the criteria above, strengthening a 
nomination. Among the criteria that could 
add to the basic ones is one or more of the 
following. The nominee may also have 
made:  
 

a. major contributions to broader fields 
of research in education, psychology, 
health care, or the social sciences, as 
represented by his or her 
participation (as author, speaker, or 
consultant) in research forums from 
fields other than Rasch measurement 
or by the recognition of his or her 

scholarship in other fields of inquiry 
(inclusive of all of educational 
research and the social sciences); OR  

 
b. major impact on the practice of 

Rasch measurement, as represented 
by the existence of policy 
documents, curriculum materials, 
professional development programs, 
or a corpus of practitioner- or public-
oriented literature to which the 
nominee has significantly 
contributed as an author.  

 
The award includes a plaque and an invited 
address for the 2023 Rasch SIG business 
meeting at AERA conference. An 
honorarium is included, and some travel 
reimbursement may be available. 

 
Nominations should include the following: 
Individuals will be nominated via a letter of 
nomination emailed to the Convener of the 
Awards Committee proposing the name of 
the nominee and describing the grounds on 
which the nominee meets the requirements 
for the award. Three criteria should be 
addressed in the letter:  

 
1. A brief (no more than 250-word) 

description of the program of 
research carried out by the nominee. 

2. A list of significant publications 
representing the contributions 
described, and a list of scholars who 
have been significantly affected by 
the work of the nominee. The list of 
scholars may include, but need not 
be limited to, doctoral students who 
worked with the nominee. Current 
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contact information for the list of 
scholars should also be included in 
the nomination.  

3. The nominee's CV.  
 
Self-nominations will not be 

accepted. The deadline for nominations is 
December 31, 2021. Nominations are 
submitted by sending an email to the SIG 
Chair, Jue Wang, at jue.wang@miami.edu. 
 
Jue Wang, Chair of Rasch SIG 
Eli Jones, Secretary of Rasch SIG 
Dandan Liao, Treasurer of Rasch SIG 
 
Call for Nominations for Rasch 

Measurement SIG Officers 
 
The Rasch Measurement SIG is seeking 
nominations for the next slate of officers. 
The following positions on the Rasch 
Measurement SIG are open for election. The 
length of the term is indicated in 
parentheses, and all terms start at the end of 
the 2022 AERA Annual Meeting.  
 

● Chair (2 years) 
● Secretary (2 years) 
● Treasurer (2 years)  

 
AERA policy requires that all elections be 
competitive; that is, there must be two or 
more candidates for each elected office. 
Only Regular Members of AERA can run 
for office. Candidates must also be current 
members of the SIG and of AERA to serve 
as an officer. Self-nominations are welcome. 
Members who wish to nominate a candidate 
for consideration, or self-nominate 
themselves, should send a one-page 

biography including the qualifications of the 
nominee to Dr. Dandan Liao (Rasch SIG 
Treasure) at 
dandan.liao@cambiumassessment.com.  
 
**The initial call for nominations were due 
on September 30, 2021. However,  you can 
still contact Dr. Liao before October 30 
submission deadline if you are interested.** 
 
Duties and Responsibilities of The 
Officers 
 
Chair: The Chair shall be responsible for 
the general administration of the SIG, for 
ensuring that the SIG Bylaws are followed, 
and shall act as liaison between the SIG and 
AERA and the SIG and the SIG Executive 
Committee. The Chair shall preside at all 
meetings of the SIG’s Executive Committee 
and at the Annual Business Meeting. The 
Chair shall act as parliamentarian or shall 
appoint a SIG member to serve in that role 
for each meeting. The Chair shall appoint ad 
hoc committees as needed and shall appoint 
persons to assist officers, to chair 
committees, or to carry out other SIG work.  
 
Secretary: The Secretary shall be 
responsible for managing any official 
correspondence and meeting minutes of the 
Rasch SIG. This person will also be 
responsible for maintaining the Rasch SIG 
website, or appointing an appropriate 
representative as need.  
 
Treasurer: The Treasurer shall be 
responsible for managing and reporting on 
the financial accounts of the Rasch SIG and 
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the safe keeping of all financial documents 
of the Rasch SIG.  
 
For more information about Rasch 
Measurement SIG, please check out our 
website and follow us on Facebook.  
  
Website: 
https://www.aera.net/SIG083/Rasch-
Measurement  
Facebook: 
https://www.facebook.com/groups/raschmea
surement 
 
Sincerely, 
Jue Wang, Chair of Rasch SIG 
Eli Jones, Secretary of Rasch SIG 
Dandan Liao, Treasurer of Rasch SIG 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Women in Measurement 
 

Women in Measurement is a non-
profit organization dedicated to the 
advancement of gender and racial 
equity in educational measurement. 
We work to amplify the voices of 
women—and minoritized women in 
particular—and to provide structures 
of support for women throughout 
their careers in academia, industry, 
non-profits, and the public sector. 
Women in Measurement seeks to 
understand and dismantle systems of 
oppression that have led to 
disproportionate access and 
representation at the highest levels of 
our field. Its programs and events 
include mentoring sessions, research 
fellowships, networking events, and 
more. Our next event will be a 
mentoring circle for women of color 
in the field, held on December 8th at 
12:00-1:30pm EST. Click here to 
register for that event. To learn more 
about our organization and sign up 
for the monthly newsletter visit 
www.womeninmeasurement.org.   
 
Susan Lyons 
Executive Director, Women in 
Measurement, Inc. 


