The Hierarchical Rater Model from a Rasch Perspective

Modeling rater behavior is problematic. Are the rater's intended to be acting as locally-independent experts, each with a unique perspective of what is the "true" rating? If so, each rater provides new information about the person being rated. The raters have the same status as test items, and a many-facet Rasch model is indicated. In general, more ratings by more raters of the same person-item interaction produce more measurement information.

Are the raters merely human scoring machines, all expected to produce the same one, "true" rating? If so, then the same type of quality control that would be applied to optical scanning equipment is indicated. More ratings by more raters of the same person-item interaction produce no additional measurement information, nor more information about the "true" rating.

In practice, however, the situation is ambivalent. Raters are told to use their expertise, but are also instructed to conform with other raters in awarding "true" ratings. More ratings by more raters of the same person-item interaction produce more information about the "true" rating, but not otherwise more measurement information about the performance.

So how is this asymmetry in the rating process to be modeled? The Hierarchical Rater Model (HRM) is one approach.

HRM (Patz et al., 2000, a variant is Donoghue & Hombo, 2003) uses a two-level approach. At the first level is modeling person performance. HRM uses a Rasch Partial Credit Model with persons and items, but the estimates are based on idealized "true" (not empirical) ratings.


where "j" represents "true", not empirical, ratings.

At the second level are the idealized "true" ratings. HRM models each rater's empirical ratings to follow a normal distribution on a "raw rating" variable. Somewhere on this treated-as-linear variable is the "ideal" or "true category" rating, i.e., the rating that would have been awarded by a perfect rating machine to a particular person on a particular item.

Each empirical rating, however, is displaced from its corresponding ideal by
(a) its rater r's leniency, μr, expressed as a fractional-raw-score rating adjustment, and
(b) its rater r's unreliability, expressed as the fractional-raw-score standard deviation, σr, of a normal distribution around the rater's severity.


where j is the ideal "true" rating of person n on item i and k is the empirical rating observed for rater r.

Donoghue & Hombo differ from Patz et al. in using the generalized partial credit model (i.e., the Rasch partial credit model with an item discrimination parameter) and a "fixed effect" rating model (not completely specified in their paper).

From a Rasch perspective, using the "partial credit" model is impeccable. The "ideal" rating model, however, is deficient. The "raw rating" variable is definitely not interval, it is ordinal, and may only be dichotomous. For a very lenient rater on a long rating scale, the most probable rating, according to HRM, could be a category above the top of the scale. This is impossible, so an adjustment must be made. Most obviously, the probability of awarding categories above the top category should be added to the probability of the top category. But this does not appear to have been done. Instead, out- of-range categories are merely ignored. The effect of this is that lenient raters are estimated to be even more lenient, and vice-versa for severe raters.

This suggests that an immediate improvement to the HRM model would be to express the "idealized rating" model in logistic terms, e.g., most simply,
loge ((x-"bottom")/("top"-x)),
where "bottom" and "top" are the extreme categories.

The probability of observing any particular category then becomes the integral of the probabilities of the rating occurring within 0.5 rating-points of that category on the logistic rating variable. A further improvement (perhaps already made by Patz or Donoghue) would be to bring into the "partial credit" model not merely the "idealized rating" for each person-item confluence, but the set of all possible ratings, and the probability that each one is ideal.

This area of research is at an early stage. Here is an opportunity for a Rasch-oriented doctoral student to formulate a truly measurement-based HRM model.
John Michael Linacre

Patz R.J., Junker B.W., Johnson M.S. (2000) The Hierarchical Rater Model for Rated Test Items and its Application to Large-Scale Educational Assessment Data. Revised AERA Paper.

Donoghue J.R., Hombo C.M. (2003) An Extension of the Hierarchical Raters' Model to Polytomous Items. NCME Paper.


The Hierarchical Rater Model HRM from a Rasch perspective. J.M. Linacre, R.J. Patz, J.R. Donoghue … 17:2 p. 928

Please help with Standard Dataset 4: Andrich Rating Scale Model



Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

www.rasch.org welcomes your comments:

Your email address (if you want us to reply):

 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
April 26-30, 2017, Wed.-Sun. NCME, San Antonio, TX, www.ncme.org - April 29: Ben Wright book
April 27 - May 1, 2017, Thur.-Mon. AERA, San Antonio, TX, www.aera.net
April 29, 2017, Sat., 16:35 to 18:05. NCME Presidents Invitational Symposium: a new book commemorating Ben Wright's life and career, 16:35 to 18:05, San Antonio, TX, www.ncme.org
May 26 - June 23, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 30 - July 29, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
July 31 - Aug. 3, 2017, Mon.-Thurs. Joint IMEKO TC1-TC7-TC13 Symposium 2017: Measurement Science challenges in Natural and Social Sciences, Rio de Janeiro, Brazil, imeko-tc7-rio.org.br
Aug. 7-9, 2017, Mon-Wed. In-person workshop and research coloquium: Effect size of family and school indexes in writing competence using TERCE data (C. Pardo, A. Atorressi, Winsteps), Bariloche Argentina. Carlos Pardo, Universidad Catòlica de Colombia
Aug. 7-9, 2017, Mon-Wed. PROMS 2017: Pacific Rim Objective Measurement Symposium, Sabah, Borneo, Malaysia, proms.promsociety.org/2017/
Aug. 10, 2017, Thurs. In-person Winsteps Training Workshop (M. Linacre, Winsteps), Sydney, Australia. www.winsteps.com/sydneyws.htm
Aug. 11 - Sept. 8, 2017, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Aug. 18-21, 2017, Fri.-Mon. IACAT 2017: International Association for Computerized Adaptive Testing, Niigata, Japan, iacat.org
Sept. 15-16, 2017, Fri.-Sat. IOMC 2017: International Outcome Measurement Conference, Chicago, jampress.org/iomc2017.htm
Oct. 13 - Nov. 10, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 5 - Feb. 2, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 10-16, 2018, Wed.-Tues. In-person workshop: Advanced Course in Rasch Measurement Theory and the application of RUMM2030, Perth, Australia (D. Andrich), Announcement
Jan. 17-19, 2018, Wed.-Fri. Rasch Conference: Seventh International Conference on Probabilistic Models for Measurement, Matilda Bay Club, Perth, Australia, Website
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
The HTML to add "Coming Rasch-related Events" to your webpage is:
<script type="text/javascript" src="http://www.rasch.org/events.txt"></script>

 

The URL of this page is www.rasch.org/rmt/rmt172k.htm

Website: www.rasch.org/rmt/contents.htm