Commercial Measurement and Academic Research

Are precision instrumentation and technology the products, by-products, or spin-offs of scientific research that is conducted in, by, or through academic institutions? No! "Historically the arrow of causality is largely from the technology to the science" (Price, 1986, p. 240).

Scientific discoveries and theories do not lead to technological innovation. Rather, technological innovations spring up from within the framework of existing engineering problems in industrial and commercial contexts. Wallace (1972, p. 239) in his classic study of the Industrial Revolution discovers that economic pressures drive the development of new technologies more often than new scientific discoveries calling for application. Kuhn (1977, p. 90) makes this point in an example from the history of energy conversion processes, showing that the vast majority of the pioneers who had some degree of success in quantifying conversion processes were engineers who actually worked with engines.

Rabkin (1992, p. 66) makes the same point again with regard to the sequence of events assumed in a 1965 US National Academy of Sciences report. Rabkin says that the usual "scheme seems to be at variance with much of the evidence in the history of science. It has been shown that the integration of instruments has been rarely due to the demand on the part of the researcher. Rather it occurs through vigorous supply of advanced instruments on the part of the industry."

And so it is said that "thermodynamics owes much more to the steam engine than ever the steam engine owed to thermodynamics" and that "the chemical revolution resulted much more from the technique of the electric battery than from the careful measurements or new theories of Lavoisier" (Price, 1986, pp. 240, 248).

Thus, contrary to the popular perception of technology as a product of academic research science, it often, if not usually, happens that widespread commercial applications of a new technology precede the science based on that technology.

Many academic researchers believe that their measurement-theoretic quantitative tests and tools have a practical capacity to achieve results that are not accessible by other methods' lax standards. But where is the cutting edge in precision test- or survey-based measurement? What research publications set the pace and establish the standard, and how do they compare with the measures employed at the big educational and psychological test publishers?

To take the handiest example, I contend that Stenner et al. (2006) describe the state of the art in measurement applications in reading education. These applications currently involve about 20 million US students, 100,000 books, tens of millions of magazine articles, in English and Spanish, and every major children's book, elementary and secondary textbook, and reading test publisher. All of the work was performed by MetaMetrics, Inc. and its business partners (some of it with funding from the NIH's Small Business Innovation Research program). Nothing of comparable precision or validity, not to speak of widespread application, has yet been accomplished in academic research on reading measurement. Stenner's Lexile Framework for Reading is the living embodiment of the "vigorous supply of advanced instruments on the part of industry," as Rabkin puts it.

The bottom line is that there is considerable truth and value to be found in Ernest Rutherford's comment that, if you cannot understand the results of your experiment without doing a statistical analysis, then you should have done a better experiment (quoted in Wise, 1995, p. 11). Proper measurement in a clean experimental design obviates the need for complex and difficult statistical manipulations. Universal uniform reference standard metrics go the further distance of obviating the need for meta-analytic syntheses of different experiments, since everyone everywhere is able to see their results expressed in the same unit.

But if the history of science is to be believed, we're not going to have that kind of common language on any appreciable scale in outcomes research in education and health care until they can be made commercially viable. Alternative approaches that go against the historical grain might be worth considering, but the odds would seem to favor a new iteration of the old pattern.

William P. Fisher, Jr.


Kuhn, T. S. (1977). The essential tension: Selected studies in scientific tradition and change. Chicago, Illinois: University of Chicago Press.

Price, D. J. de Solla. (1986). Of sealing wax and string. In Little Science, Big Science--and Beyond (pp. 237-253). New York: Columbia University Press.

Rabkin, Y. M. (1992). Rediscovering the instrument: Research, industry, and education. In R. Bud & S. E. Cozzens (Eds.), Invisible connections: Instruments, institutions, and science (pp. 57-82). Bellingham, Washington: SPIE Optical Engineering Press.

Stenner, A. J., Burdick, H., Sanford, E. E., & Burdick, D. S. (2006). How accurate are Lexile text measures? Journal of Applied Measurement, 7(3), 307-22.

Wallace, A. F. C. (1972). Rockdale: The growth of an American village in the early Industrial Revolution (Technical drawings by Robert Howard). New York: W. W. Norton & Company.

Wise, M. N. (Ed.). (1995). The values of precision. Princeton, New Jersey: Princeton University Press.

Commercial Measurement and Academic Research, Fisher, W.P. … Rasch Measurement Transactions, 2006, 20:2 p. 1058

Please help with Standard Dataset 4: Andrich Rating Scale Model

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez

To be emailed about new material on
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from welcomes your comments:

Your email address (if you want us to reply):


ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website,

Coming Rasch-related Events
July 31 - Aug. 3, 2017, Mon.-Thurs. Joint IMEKO TC1-TC7-TC13 Symposium 2017: Measurement Science challenges in Natural and Social Sciences, Rio de Janeiro, Brazil,
Aug. 7-9, 2017, Mon-Wed. In-person workshop and research coloquium: Effect size of family and school indexes in writing competence using TERCE data (C. Pardo, A. Atorressi, Winsteps), Bariloche Argentina. Carlos Pardo, Universidad Catòlica de Colombia
Aug. 7-9, 2017, Mon-Wed. PROMS 2017: Pacific Rim Objective Measurement Symposium, Sabah, Borneo, Malaysia,
Aug. 10, 2017, Thurs. In-person Winsteps Training Workshop (M. Linacre, Winsteps), Sydney, Australia.
Aug. 11 - Sept. 8, 2017, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets),
Aug. 18-21, 2017, Fri.-Mon. IACAT 2017: International Association for Computerized Adaptive Testing, Niigata, Japan,
Sept. 15-16, 2017, Fri.-Sat. IOMC 2017: International Outcome Measurement Conference, Chicago,
Oct. 13 - Nov. 10, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps),
Oct. 25-27, 2017, Wed.-Fri. In-person workshop: Applying the Rasch Model hands-on introductory workshop, Melbourne, Australia (T. Bond, B&FSteps), Announcement
Jan. 5 - Feb. 2, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps),
Jan. 10-16, 2018, Wed.-Tues. In-person workshop: Advanced Course in Rasch Measurement Theory and the application of RUMM2030, Perth, Australia (D. Andrich), Announcement
Jan. 17-19, 2018, Wed.-Fri. Rasch Conference: Seventh International Conference on Probabilistic Models for Measurement, Matilda Bay Club, Perth, Australia, Website
April 13-17, 2018, Fri.-Tues. AERA, New York, NY,
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps),
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps),
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets),
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps),
The HTML to add "Coming Rasch-related Events" to your webpage is:
<script type="text/javascript" src=""></script>


The URL of this page is