PROX for Polytomous Data

PROX for polytomous data. Linacre JM. … 8:4 p.400

The Normal Approximation Estimation Algorithm (PROX) was developed for dichotomous data (Cohen 1979), but can be extended to many-facet polytomous data with missing observations. The expediting specification is that each parameter (e.g., person, item, task, step) is taken to have encountered a symmetrically distributed sample of challenges (e.g., person facing items+tasks+judges). The distributions of challenges faced by the elements may have different means and variances.

Consider the two-facet case of person abilities {Bn} facing item difficulties {Di} on a rating scale with step calibrations {Fk}, k=0,m. According to Rasch, for each pair of adjacent categories, there is the logistic relationship

Label the logistic function , so that

Count the Sik persons who respond to item i in category k. Then sum for each item i across all Sik-1+Sik persons it encounters, who respond in categories k-1 or k,

Rating Scales with an Even Number of Categories

Taking the categories in pairs exhausts the data, so accumulate these sums across all odd rating scale steps, k=1,3,..,m,

For convenience, define

When the Ni relevant {Bn-Fk} are symmetrically distributed, summing across them can be approximated by integrating across Ni normal distributions of a random variable {x} with mean µi and standard deviation i of the relevant {Bn-Fk}:

where indicates the normal cumulative distribution function.

A convenient equivalence between logistic and normal cumulative distributions (Camilli 1994) is


But, in general,

since 1.702² = 2.9,

substituting the logistic for the cumulative normal,

and rearranging, produces an estimation equation for Di, the logit difficulty of item i,

with standard error

The comparable PROX estimation equation for person n with logit ability, Bn, is

where Snk is the number of responses in category k by person n, and µn and n summarize the distribution of relevant logit difficulties {Di+Fk} encountered by person n.

Rating Scales with an Odd Number of Categories

A convenient approach is to average the results obtained by considering two sets of even numbers of categories: the upper categories, omitting category 0, with Niu observations,

and the lower categories, omitting category m, with Nil observations,

so that

with standard error

Step Calibrations

Estimation equations for the step calibrations are

where Sk is the number of responses in category k. µk and k summarize the logit measures {Bn-Di} for the Sk-i+Sk responses in categories k-1 and k.

If step k is not observed, then Fk=∞, Fk+1=-∞, and Fk+Fk+1 is given by

where k' indicates responses of k-1 or k+1.

These equations can be solved iteratively, with anchoring constraints like Di0, Fk0, producing estimates for the measures of all elements. For more than two facets, the {µi} and {i} summarize the distribution of the combined measures {Bn-..-Fk} of the other facets as encountered by item i, and similarly for the persons, tasks, judges, steps, etc.

John Michael Linacre

Camilli, G. 1994. Origin of the scaling constant d=1.7 in item response theory. Journal of Educational and Behavioral Statistics. 19(3) p.293-5.

Cohen, L. 1979. Approximate expressions for parameter estimates in the Rasch model. British Journal of Mathematical and Statistical Psychology 32(1) 113-120.

PROX for polytomous data. Linacre JM. … Rasch Measurement Transactions, 1995, 8:4 p.400

Please help with Standard Dataset 4: Andrich Rating Scale Model

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez

To be emailed about new material on
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from welcomes your comments:

Your email address (if you want us to reply):


ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website,

Coming Rasch-related Events
April 26-30, 2017, Wed.-Sun. NCME, San Antonio, TX, - April 29: Ben Wright book
April 27 - May 1, 2017, Thur.-Mon. AERA, San Antonio, TX,
April 29, 2017, Sat., 16:35 to 18:05. NCME Presidents Invitational Symposium: a new book commemorating Ben Wright's life and career, 16:35 to 18:05, San Antonio, TX,
May 26 - June 23, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps),
June 30 - July 29, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps),
July 31 - Aug. 3, 2017, Mon.-Thurs. Joint IMEKO TC1-TC7-TC13 Symposium 2017: Measurement Science challenges in Natural and Social Sciences, Rio de Janeiro, Brazil,
Aug. 7-9, 2017, Mon-Wed. In-person workshop and research coloquium: Effect size of family and school indexes in writing competence using TERCE data (C. Pardo, A. Atorressi, Winsteps), Bariloche Argentina. Carlos Pardo, Universidad Catòlica de Colombia
Aug. 7-9, 2017, Mon-Wed. PROMS 2017: Pacific Rim Objective Measurement Symposium, Sabah, Borneo, Malaysia,
Aug. 10, 2017, Thurs. In-person Winsteps Training Workshop (M. Linacre, Winsteps), Sydney, Australia.
Aug. 11 - Sept. 8, 2017, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets),
Aug. 18-21, 2017, Fri.-Mon. IACAT 2017: International Association for Computerized Adaptive Testing, Niigata, Japan,
Sept. 15-16, 2017, Fri.-Sat. IOMC 2017: International Outcome Measurement Conference, Chicago,
Oct. 13 - Nov. 10, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps),
Jan. 5 - Feb. 2, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps),
Jan. 10-16, 2018, Wed.-Tues. In-person workshop: Advanced Course in Rasch Measurement Theory and the application of RUMM2030, Perth, Australia (D. Andrich), Announcement
Jan. 17-19, 2018, Wed.-Fri. Rasch Conference: Seventh International Conference on Probabilistic Models for Measurement, Matilda Bay Club, Perth, Australia, Website
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps),
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps),
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets),
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps),
The HTML to add "Coming Rasch-related Events" to your webpage is:
<script type="text/javascript" src=""></script>


The URL of this page is