Guttman Coefficients and Rasch Data

"I have been wondering if there has been any study on Guttman scaling (which is also known as implicational scaling in a number of sub-branches of linguistics) that looked at how likely it is, by sheer chance, to come up with a set of data that is highly reproducible (i.e., the coefficient of reproducibility is over .90) and also highly scalable (i.e., the Scalability Coefficient >> 0.60)."

Kenjiro Matsuda, Kobe Shoin Women's University, on the LINGUIST Forum.

The immediate answer to Matsuda's question is "highly unlikely". But to see why, let us go further and ask what are the expected values of the Guttman coefficients for various person and item dispersions, when the data fit a stochastic Guttman model, i.e., a Rasch model ("Rasch Model from Consistent Stochastic Guttman Ordering". RMT 6:3, p. 232).

On the LINGUIST Forum was also written:

"Guttman Scales are ones in which the items constitute a unidimensional series such that an answer to a given item predicts the answers to all previous items in the series (e.g., in an arithmetic scale, correctly answering a subtraction item predicts a correct answer to a prior item on addition, but not necessarily a later item on multiplication). That is, a respondent who answers an item in a positive way must answer less difficult items also in a positive way."

Coefficient of Reproducibility

Douglas W. Coleman, University of Toledo, writes:

"The coefficient of reproducibility measures how well we can predict any given student's responses from his/her position within the table; it should be at least .90."

The Coefficient of Reproducibility is:

C. of R. = 1 - Errors / (Total Responses)

First, sort the items (the columns) by item score, and persons (the rows) by person score, then display the responses as a table, called a Scalogram. For a perfect Guttman scale with no errors, the Scalogram will form a triangle of 1's (1 indicating a correct answer to the item) with no interior 0's and no exterior 1's (which would indicate passing a more difficult item but failing a less difficult one). A Guttman error is an interior 0 or an exterior 1 in the Scalogram.

Since, for practice, there is ambiguity in this definition, a convention, followed in SPSS-X and SAS (see RMT 5:4, p. 189), but not by Guttman or Menzel, is to act as though all persons with the same raw score are in the same row of the Scalogram, and all items with the same raw score are in the same column. (Guttman and Menzel sort the rows and columns opportunistically, apparently even regardless of their scores, in order to minimize the number of errors.)

Guttman Reproducibility


The Figure above, from a simulation study, shows the results that can be expected when the data fit the Rasch model. The study indicates that C. of R. is essentially independent of test length or sample size (not shown here), but is influenced by test width and sample dispersion. It is seen that the benchmark number of 0.9 (Guttman, 1950) implies a wide sample.

Coefficients of Scalability

"The complete formula for the Coefficient of Scalability now reads: C. of S. = 1 - (Errors/Maximum Errors); where Maximum Errors is determined by whichever of the Maximum [Possible] Errors by Items [with fixed person marginals] and Maximum [Possible] Errors by Persons [with fixed item marginals] yields the smaller result."

Menzel, H. (1953) A new coefficient for Scalogram analysis. Public Opinion Quarterly, 17, 268-280.

and "The new level of acceptance [with C. of S.] may be somewhere between .60 and .65" (Menzel, p. 279)

But ...

"The scalability coefficient is defined as 1 minus the sum of the observed number of errors according to the Guttman scale model over the sum of the expected number of errors, assuming the responses to the items are independent across persons and the [item] marginals are fixed."

Debets, P., & Brouwer, E. (1989) MSP, a program for Mokken scale analysis for polychotomous items. Groningen, The Netherlands: ProGamma. (Following Loevinger, 1947, and Mokken)

A post to the LINGUIST Forum states that "C. of S. = 1 - (E/X), where E is the number of Guttman errors and X is the number of errors expected by chance", i.e., the second definition. It then adds: "By arbitrary convention, C. of S. should be .60 or higher to consider a set of items Guttman scalable."

Guttman maximum Scalability


 :

Guttman expected Scalability


The two Figures above, again from a simulation study, show the expected values of the two scalability coefficients for "true/false" data that fit the Rasch model. It is seen that the two definitions yield very d different scalability coefficients. A major difference is that the "Maximum" Coefficient considers both persons and items, the "Expected" coefficient considers only items (according to my reading of the Guttman and Mokken literature). This disregard of the rows produces the counter-intuitive result that the wider the test, the lower the value of the "Expected" coefficient. We can the see that the benchmark value of 0.6 implies a wide test for the "Maximum" coefficient, but a wide sample for the "Expected" one.

Unfortunately, from the perspective of Rasch measurement, it appears that these coefficients have little to offer in evaluating data quality.

John Michael Linacre

Guttman, L. (1950) The basis for Scalogram analysis. In Stouffer et al. Measurement & Prediction, The American Soldier, Vol IV. New York: Wiley.

Loevinger, J. (1947) A systematic approach to the construction and evaluation of tests of ability. Psychological Monographs, 61, 4.

Mokken, R.J. & Lewis, C. (1982) A non-parametric approach to the analysis of dichotomous responses. Applied Psychological Measurement, 1982, 417-430.

Guttman Coefficients and Rasch Data. Linacre, J.M. … Rasch Measurement Transactions, 2000, 14:2 p.746-7




Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 2nd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

www.rasch.org welcomes your comments:

Your email address (if you want us to reply):

 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
July 28 - Nov. 22, 2014, Mon.-Sat. On-line course: Introduction to Rasch Measurement Theory (D. Andrich, I. Marais) www.education.uwa.edu.au/ppl/courses
Aug. 2-6, 2014, Sat.-Wed. PROMS2014, Guangzhou, China: Sat.-Sun. workshops; Mon.-Wed. symposium, www.confchina.com
Aug. 8 - Sept. 5, 2014, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Aug. 11-15, 2014, Mon.-Fri. On-line short course: Applied Measurement with jMetrik (P. Meyer). curry.virginia.edu/community-programs/conferences/jMetrik/
Sept. 3-5, 2014, Wed.-Fri. IMEKO International Measurement Confederation Symposium, Madeira Island, Portugal, www.imekotc7-2014.pt
Sept. 10-12, 2014, Wed.-Fri. In-person workshop: Introductory Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Sept. 12 - Oct. 24, 2014, Fri.-Fri. On-line workshop: Rasch Applications, Part I: How to Construct a Rasch Scale (W.P. Fisher), www.statistics.com
Sept. 15-17, 2014, Mon.-Wed. In-person workshop: Intermediate Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Sept. 18-19, 2014, Thurs.-Fri. In-person workshop: Advanced Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Sept. 30, 2014, Tues. Submission deadline: 6th Rasch Conference: Sixth International Conference on Probabilistic Models for Measurement in Education, Psychology, Social Science and Health, Cape Town, South Africa www.rasch.co.za/conference.php
Oct. 3, 2014, Fri. Submission deadline: IOMC 2015: International Outcomes Measurement Conference, Chicago IL www.jampress.org
Oct. 8-10, 2014, Wed.-Fri. IACAT Conference: International Association of Computerized Adaptive Testing, Princeton, NJ, iacat.org/conference
Oct. 17 - Nov. 14, 2014, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Nov. 14, 2014, Fri. In-person workshop: IX Workshop on Rasch Models in Business Administration, Tenerife, Canary Islands, Spain, www.institutos.ull.es/viewcontent/institutos/iude/46416/es
Dec. 3-5, 2014, Wed.-Fri. In-person workshop: Introductory Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Jan. 2 - Jan. 30, 2015, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 12-14, 2015, Mon.-Wed. 6th Rasch Conference: Sixth International Conference on Probabilistic Models for Measurement in Education, Psychology, Social Science and Health, Cape Town, South Africa www.rasch.co.za/conference.php
March 11-13, 2015, Wed.-Fri. In-person workshop: Introductory Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
March 20, 2015, Fri. UK Rasch User Group Meeting, London, United Kingdom, www.rasch.org.uk
March 26-27, 2015, Thur.-Fri. In-person workshop: Introduction to Rasch Measurement with Winsteps (W. Boone), Cincinnati, raschmeasurementanalysis.com
April 16-20, 2015, Thurs.-Mon. AERA Annual Meeting, Chicago IL www.aera.net
April 21-22, 2015, Tues.-Wed. IOMC 2015: International Outcomes Measurement Conference, Chicago IL www.jampress.org
May 13-15, 2015, Wed.-Fri. In-person workshop: Introductory Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
May 18-20, 2015, Mon.-Wed. In-person workshop: Intermediate Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Sept. 9-11, 2015, Wed.-Fri. In-person workshop: Introductory Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Sept. 14-16, 2015, Mon.-Wed. In-person workshop: Intermediate Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Sept. 17-18, 2015, Thur.-Fri. In-person workshop: Advanced Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Dec. 2-4, 2015, Wed.-Fri. In-person workshop: Introductory Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
The HTML to add "Coming Rasch-related Events" to your webpage is:
<script type="text/javascript" src="http://www.rasch.org/events.txt"></script>

The URL of this page is www.rasch.org/rmt/rmt142e.htm

Website: www.rasch.org/rmt/contents.htm