# Guttman Coefficients and Rasch Data

"I have been wondering if there has been any study on Guttman scaling (which is also known as implicational scaling in a number of sub-branches of linguistics) that looked at how likely it is, by sheer chance, to come up with a set of data that is highly reproducible (i.e., the coefficient of reproducibility is over .90) and also highly scalable (i.e., the Scalability Coefficient >> 0.60)."

Kenjiro Matsuda, Kobe Shoin Women's University, on the LINGUIST Forum.

The immediate answer to Matsuda's question is "highly unlikely". But to see why, let us go further and ask what are the expected values of the Guttman coefficients for various person and item dispersions, when the data fit a stochastic Guttman model, i.e., a Rasch model ("Rasch Model from Consistent Stochastic Guttman Ordering". RMT 6:3, p. 232).

On the LINGUIST Forum was also written:

"Guttman Scales are ones in which the items constitute a unidimensional series such that an answer to a given item predicts the answers to all previous items in the series (e.g., in an arithmetic scale, correctly answering a subtraction item predicts a correct answer to a prior item on addition, but not necessarily a later item on multiplication). That is, a respondent who answers an item in a positive way must answer less difficult items also in a positive way."

Coefficient of Reproducibility

Douglas W. Coleman, University of Toledo, writes:

"The coefficient of reproducibility measures how well we can predict any given student's responses from his/her position within the table; it should be at least .90."

The Coefficient of Reproducibility is:

C. of R. = 1 - Errors / (Total Responses)

First, sort the items (the columns) by item score, and persons (the rows) by person score, then display the responses as a table, called a Scalogram. For a perfect Guttman scale with no errors, the Scalogram will form a triangle of 1's (1 indicating a correct answer to the item) with no interior 0's and no exterior 1's (which would indicate passing a more difficult item but failing a less difficult one). A Guttman error is an interior 0 or an exterior 1 in the Scalogram.

Since, for practice, there is ambiguity in this definition, a convention, followed in SPSS-X and SAS (see RMT 5:4, p. 189), but not by Guttman or Menzel, is to act as though all persons with the same raw score are in the same row of the Scalogram, and all items with the same raw score are in the same column. (Guttman and Menzel sort the rows and columns opportunistically, apparently even regardless of their scores, in order to minimize the number of errors.)

The Figure above, from a simulation study, shows the results that can be expected when the data fit the Rasch model. The study indicates that C. of R. is essentially independent of test length or sample size (not shown here), but is influenced by test width and sample dispersion. It is seen that the benchmark number of 0.9 (Guttman, 1950) implies a wide sample.

Coefficients of Scalability

"The complete formula for the Coefficient of Scalability now reads: C. of S. = 1 - (Errors/Maximum Errors); where Maximum Errors is determined by whichever of the Maximum [Possible] Errors by Items [with fixed person marginals] and Maximum [Possible] Errors by Persons [with fixed item marginals] yields the smaller result."

Menzel, H. (1953) A new coefficient for Scalogram analysis. Public Opinion Quarterly, 17, 268-280.

and "The new level of acceptance [with C. of S.] may be somewhere between .60 and .65" (Menzel, p. 279)

But ...

"The scalability coefficient is defined as 1 minus the sum of the observed number of errors according to the Guttman scale model over the sum of the expected number of errors, assuming the responses to the items are independent across persons and the [item] marginals are fixed."

Debets, P., & Brouwer, E. (1989) MSP, a program for Mokken scale analysis for polychotomous items. Groningen, The Netherlands: ProGamma. (Following Loevinger, 1947, and Mokken)

A post to the LINGUIST Forum states that "C. of S. = 1 - (E/X), where E is the number of Guttman errors and X is the number of errors expected by chance", i.e., the second definition. It then adds: "By arbitrary convention, C. of S. should be .60 or higher to consider a set of items Guttman scalable."

:

The two Figures above, again from a simulation study, show the expected values of the two scalability coefficients for "true/false" data that fit the Rasch model. It is seen that the two definitions yield very d different scalability coefficients. A major difference is that the "Maximum" Coefficient considers both persons and items, the "Expected" coefficient considers only items (according to my reading of the Guttman and Mokken literature). This disregard of the rows produces the counter-intuitive result that the wider the test, the lower the value of the "Expected" coefficient. We can the see that the benchmark value of 0.6 implies a wide test for the "Maximum" coefficient, but a wide sample for the "Expected" one.

Unfortunately, from the perspective of Rasch measurement, it appears that these coefficients have little to offer in evaluating data quality.

John Michael Linacre

Guttman, L. (1950) The basis for Scalogram analysis. In Stouffer et al. Measurement & Prediction, The American Soldier, Vol IV. New York: Wiley.

Loevinger, J. (1947) A systematic approach to the construction and evaluation of tests of ability. Psychological Monographs, 61, 4.

Mokken, R.J. & Lewis, C. (1982) A non-parametric approach to the analysis of dichotomous responses. Applied Psychological Measurement, 1982, 417-430.

Guttman Coefficients and Rasch Data. Linacre, J.M. … Rasch Measurement Transactions, 2000, 14:2 p.746-7

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
May 27 - June 24, 2016, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 6, 2016, Monday Symposium on Rasch Analysis, Nottingham, UK (D. Andrich), Announcement
June 16-19, 2016, Thur.-Sat. In-person workshop: Introduction to Rasch measurement analysis in the healthcare sciences and education (in English), Barcelona, Spain (L. González de Paz, W. Boone, Winsteps), Announcement
July 1 - July 29, 2016, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
July 6-8, 2016, Wed.-Fri. In-person workshop: IRT and CAT using Concerto, Cambridge, UK, www.psychometrics.cam.ac.uk/
July 30-31, 2016, Sat.-Sun. PROMS 2016 Pre-Conference Workshop, Xi'an, China, confchina.com
Aug. 1-3, 2016, Mon.-Wed. PROMS 2016 Conference, Xi'an, China, confchina.com
Aug. 1 - Nov. 25, 2016, Mon.-Fri. On-line course: Introduction to Rasch Measurement Theory EDU5638 (D. Andrich, RUMM2030), www.education.uwa.edu.au
Aug. 3-5, 2016, Wed.-Fri. IMEKO 2016 TC1-TC7-TC13 Joint Symposium, Berkeley, CA, imeko-tc7-berkeley-2016.org
Aug. 12 - Sept. 9, 2016, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Sept. 2 - Oct. 14, 2016, Fri.-Fri. On-line workshop: Rasch Applications, Part 1: How to Construct a Rasch Scale (W.P. Fisher, Jr.), www.statistics.com
Sept. 28-30, 2016, Wed.-Fri. In-person workshop: Introductory Rasch (M. Horton, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Oct. 3-5, 2016, Mon.-Wed. In-person workshop: Intermediate Rasch (M. Horton. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Oct. 6-7, 2016, Thur.-Fri. In-person workshop: Advanced Rasch (M. Horton, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Oct. 14 - Nov. 11, 2016, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Nov. 11, 2016, Fri. In-person workshop: 11th International Workshop on Rasch Models in Business Administration, Tenerife, Spain, www.ull.es
Dec. 7-9, 2016, Wed.-Fri. In-person workshop: Introductory Rasch (M. Horton, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Jan. 6 - Feb. 3, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 26 - June 23, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 30 - July 29, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 11 - Sept. 8, 2017, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Aug. 18-21, 2017, Fri.-Mon. IACAT 2017: International Association for Computerized Adaptive Testing, Niigata, Japan, iacat.org
Oct. 13 - Nov. 10, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 5 - Feb. 2, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 10-16, 2018, Wed.-Tues. In-person workshop: Advanced Course in Rasch Measurement Theory and the application of RUMM2030, Perth, Australia (D. Andrich), Announcement
Jan. 17-19, 2018, Wed.-Fri. Rasch Conference: Matilda Bay Club, Perth, Australia, Website
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com