# Log-Odds in Sherwood Forest

Once upon a time Robin Hood held an Archery competition. The targets were an oak, a larch and a pine. Robin Hood, Little John, Will Scarlet and Friar Tuck participated. Maid Marion kept score. First, they all shot 12 arrows at the Oak. Robin had 10 hits, John had 9, Will had 6, and Tuck had 4. Firing so many arrows took a long time, so, to speed things up, they shot at the other trees simultaneously. Robin started firing at the Larch and Tuck at the Pine. But the competition came to a sudden halt when the Sheriff of Nottingham was sighted, and everyone ran for cover. Will Scarlet asked Maid Marion for the final score. "Robin and Tuck both fired 7 more arrows. Robin hit the Larch 5 times, but Tuck only hit the Pine once". "How would I have fared on those other trees?" mused Will. Can we answer his question?

Thinking only about the Oak, we might say that Robin is 4 hits better than Will and 6 better than Tuck. Then, since Robin hit the Larch 5 times, we might expect Will to hit it 5-4 = 1 time. But then Tuck would hit it 5-6 = -1 times. This line of reasoning gives a nonsensical result because the worst Tuck could do is hit it 0 times.

Another approach could be based on proportions of success. Robin hit the oak 10 times to Will's 6 times, i.e. Will hits the oak 6/10 the times of Robin. Then, since Robin hits the Larch 5 times, we might expect Will to hit 5x(6/10) = 3 times. This sounds reasonable. But turn it around. Robin missed the Oak 12-10 = 2 times. Will missed the Oak 12-6 = 6 times. So Will misses the Oak 6/2 = 3 times more than Robin. Robin missed the Larch 7-5 = 2 times, so we might expect Will to miss it 2x3 = 6 times, and so only hit it 7-6 = 1 time. What a paradox! When we think of success, we expect Will to hit the Larch 3 times. When we think of failure, we expect Will to hit the Larch only once.

The accuracy of an archer is a combination of success and failure. At one extreme, there is all hits and no misses. At the other extreme, all misses and no hits. In the middle are half hits and half misses. 3 hits and 1 miss would seem as accurate as 6 hits and 2 misses.

What is twice as good as 6 hits and 2 misses? Reasonable answers are 6 hits and 1 miss, or 12 hits and 2 misses. We need to combine hits and misses in such a way that 3 hits and 1 miss give the same index of accuracy as 6 hits and 2 misses, but 6 hits and 1 miss or 12 hits and 2 misses are twice as good. The only simple solution is that 3/1 = 6/2 = 3. Then a performance twice as good is 6/1 or 12/2 = 6, which is twice 3. It follows that the useful index of accuracy is hits/misses, known as the "odds of success".

Now compare Robin and Will. On the Oak, Robin's odds of success are 10 hits/2 misses = 5, as shown in the Table. On the Larch, Robin's odds of success are 5 hits/2 misses = 2.5. So Robin's odds of success were halved from 5 to 2.5, implying that the Larch is twice as difficult to hit as the Oak.

Will's odds of success on the Oak are 6 hits/6 misses = 1. If Will's odds on the Larch are also halved then his odds become 0.5. So, if Will shot 12 arrows at the Larch, we would expect 4 hits and 8 misses.

What about Will and Tuck? Tuck's odd's of success on the Oak are 4 hits/8 misses = 1/2. His odds of success on the Pine are 1 hit/6 misses = 1/6, one third of his odds of success on the Oak. So the Pine must be 3 times more difficult to hit than the Oak.

Will's odds of success on the Oak were 6 hits/6 misses = 1, twice that of Tuck. So we expect Will's odds of success on the Pine to be 2x1/6 = 1/3. If Will shot 12 arrows at the Pine, we would expect 3 hits and 9 misses.

These odds of success are useful, but they are on a ratio scale. Their arithmetic is multiplicative, not additive. Robin is 5 times as accurate as Will, and Will is 2 times as accurate as Tuck. So Robin's accuracy compared with Tuck's is not 5+2 = 7, but 5x2 = 10 times. It's usually more convenient to think with numbers we can add and subtract, i.e. interval measures. These would be the logarithms of the odds, the log-odds. Then Robin's accuracy compared with Tuck's would be loge(5)+loge(2) = loge(10) in log-odds units (logits). The interval scale makes it clear that Little John is closer to Robin Hood than Friar Tuck is to Will Scarlet.

The additive Rasch model combines this information into one convenient formula:

Will's log-odds of success on the larch =
Will's log-odds of success on the Pine relative to Robin (his ability)
- Larch log-odds accuracy relative to Pine for Robin (its difficulty)

or, more generally,

The log-odds of success by an object on an agent =
the log-odds of success by the object on an agent at the origin of the scale (its ability)
- the log-odds of failure on the agent by an object at the origin of the scale (its difficulty)

Log-Odds in Sherwood Forest, J Linacre … Rasch Measurement Transactions, 1991, 5:3 p. 162-163

Please help with Standard Dataset 4: Andrich Rating Scale Model

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez

 To be emailed about new material on www.rasch.orgplease enter your email address here: I want to Subscribe: & click below I want to Unsubscribe: & click below Please set your SPAM filter to accept emails from Rasch.org

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
March 31, 2017, Fri. Conference: 11th UK Rasch Day, Warwick, UK, www.rasch.org.uk
April 2-3, 2017, Sun.-Mon. Conference: Validity Evidence for Measurement in Mathematics Education (V-M2Ed), San Antonio, TX, Information
April 26-30, 2017, Wed.-Sun. NCME, San Antonio, TX, www.ncme.org - April 29: Ben Wright book
April 27 - May 1, 2017, Thur.-Mon. AERA, San Antonio, TX, www.aera.net
May 26 - June 23, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 30 - July 29, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
July 31 - Aug. 3, 2017, Mon.-Thurs. Joint IMEKO TC1-TC7-TC13 Symposium 2017: Measurement Science challenges in Natural and Social Sciences, Rio de Janeiro, Brazil, imeko-tc7-rio.org.br
Aug. 7-9, 2017, Mon-Wed. In-person workshop and research coloquium: Effect size of family and school indexes in writing competence using TERCE data (C. Pardo, A. Atorressi, Winsteps), Bariloche Argentina. Carlos Pardo, Universidad Catòlica de Colombia
Aug. 7-9, 2017, Mon-Wed. PROMS 2017: Pacific Rim Objective Measurement Symposium, Sabah, Borneo, Malaysia, proms.promsociety.org/2017/
Aug. 10, 2017, Thurs. In-person Winsteps Training Workshop (M. Linacre, Winsteps), Sydney, Australia. www.winsteps.com/sydneyws.htm
Aug. 11 - Sept. 8, 2017, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Aug. 18-21, 2017, Fri.-Mon. IACAT 2017: International Association for Computerized Adaptive Testing, Niigata, Japan, iacat.org
Sept. 15-16, 2017, Fri.-Sat. IOMC 2017: International Outcome Measurement Conference, Chicago, jampress.org/iomc2017.htm
Oct. 13 - Nov. 10, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 5 - Feb. 2, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 10-16, 2018, Wed.-Tues. In-person workshop: Advanced Course in Rasch Measurement Theory and the application of RUMM2030, Perth, Australia (D. Andrich), Announcement
Jan. 17-19, 2018, Wed.-Fri. Rasch Conference: Seventh International Conference on Probabilistic Models for Measurement, Matilda Bay Club, Perth, Australia, Website
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
The HTML to add "Coming Rasch-related Events" to your webpage is:
<script type="text/javascript" src="http://www.rasch.org/events.txt"></script>

The URL of this page is www.rasch.org/rmt/rmt53d.htm

Website: www.rasch.org/rmt/contents.htm