Predicting Item Difficulties from item characteristics

Raven's (1986) progressive matrices are used to measure non-verbal intelligence: the capacity to reason by analogy, form comparisons, and think logically. The Coloured Progressive Matrices (CPM) is the 36- item version of the test used with children ages 5-12.

The complex and visual CPM items are not well understood, so we identified 14 characteristics that we thought might differentiate item difficulty (see Table 1, and Green and Kluever, 1992). Each CPM item was rated on each characteristic. Each characteristic was modelled to have its own rating scale. The 14 characteristics were then treated as agents and the 36 CPM items as objects in a Rasch analysis. The purpose of this analysis was to construct a conceptual difficulty for each CPM item based on the number and complexity of its characteristics.

CPM item characteristic map


Figure 1 shows the measures of characteristics and items. CPM items with high measures exhibited many characteristics. Characteristics with high measures were exhibited by few CPM items. Reversal (background to foreground) and B&W (colors limited to black and white) were the least observed characteristics. Only the simplest CPM items have less than 6 response Options.

Rating scale for characteristics


Figure 2 shows a map of the ratings associated with each characteristic. According to this map, a change in the number of lines and dimensions in the stem indicates less of a change in overall CPM item complexity than a change in number of elements or number of directions in the options.

To see how well these conceptual difficulty measures capture the empirical difficulties of the CPM items, the 36 CPM items were calibrated for 2 samples. The first sample was 457 1st through 5th grade children from rural southern Colorado. The second sample was 268 relatively gifted 4 through 12-year old children at an educational assessment center at the University of Denver. The results for the two samples were reassuringly similar.

After elimination of 4 CPM items as too easy or markedly misfitting, Figure 3 shows the plot of 32 conceptual item difficulties against empirically derived ones for sample 2. The correlation is .66. This implies that, after correcting for measurement error, our initial set of 14 characteristics has already explained about half the variance in item difficulties

Empirical vs. Conceptual Item Difficulties


A commonly used alternative approach to item difficulty decomposition is to regress the empirical item difficulties on the characteristics. But the item characteristics are multicollinear, so regression results are heavily influenced by the CPM-item-dependent variances in the characteristic ratings. If the characteristic rating variances were to change, even slightly (e.g., by omitting a CPM item), a different characteristic would take precedence in the regression analysis. This perplexes the researcher.

The Rasch approach, however, goes beyond multiple regression by clearly ordering the item characteristics according to their complexity. The level of successful prediction of empirical difficulties suggests that continued development of this set of item characteristics will be fruitful. The item maps provide the clarity needed to advance thought about identified and potential item characteristics and the general nature of CPM item difficulty.

Green KE & Kluever RC (1992) Components of item difficulty of Raven's Matrices. Journal of General Psychology, 119, 189-199.

Raven JC, Court JH & Raven J (1986). Coloured Progressive Matrices. London: H. K. Lewis & Co.

Table 1. Raven's Item Characteristics
Characteristic Rating value Label
In Stem of CPM Item:
Orientation 0=vertical, horizontal; 1=other Orientation
Symmetry 0=symmetrical; 1=asymmetrical Symmetry
Progression in pattern 0=no increase; 1=increase Progress-1
Dimensions in pattern 1-3=number Dimns
Lines 0=straight; 1=curved Curved
Distinct types of lines or solids 1-3=number Lines
Black and White 0=color; 1=black and white B&W
In Options of CPM Item:
Distinct options 2-6=number Options
Options contain rotation 0=no; 1=yes Rotation
Options contain reflection 0=no; 1=yes Reflection
Options contain progression 0=no; 1=yes Progress-2
Directions of options: vertical, horizontal, diagonal 1-3=number Dirns
Number of elements in the design 1-3=number Elements
Reversal between foreground and background 0 =no; 1=yes Reversal

Predicting item difficulties from item characteristics. Green KE, Kluever RC, Wright BD. … Rasch Measurement Transactions, 1994, 8:2 p.354



Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 2nd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

www.rasch.org welcomes your comments:

Your email address (if you want us to reply):

 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Nov. 30, 2014, Sun. Submission deadline: 6th Rasch Conference: Sixth International Conference on Probabilistic Models for Measurement in Education, Psychology, Social Science and Health, Cape Town, South Africa www.rasch.co.za/conference.php
Dec. 3-5, 2014, Wed.-Fri. In-person workshop: Introductory Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Jan. 2-30, 2015, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 12-14, 2015, Mon.-Wed. 6th Rasch Conference: Sixth International Conference on Probabilistic Models for Measurement in Education, Psychology, Social Science and Health, Cape Town, South Africa www.rasch.co.za/conference.php
March 11-13, 2015, Wed.-Fri. In-person workshop: Introductory Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
March 20, 2015, Fri. UK Rasch User Group Meeting, London, United Kingdom, www.rasch.org.uk
March 26-27, 2015, Thur.-Fri. In-person workshop: Introduction to Rasch Measurement with Winsteps (W. Boone), Cincinnati, raschmeasurementanalysis.com
April 16-20, 2015, Thurs.-Mon. AERA Annual Meeting, Chicago IL www.aera.net
April 21-22, 2015, Tues.-Wed. IOMC 2015: International Outcomes Measurement Conference, Chicago IL www.jampress.org
May 13-15, 2015, Wed.-Fri. In-person workshop: Introductory Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
May 18-20, 2015, Mon.-Wed. In-person workshop: Intermediate Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
May 29 - June 26, 2015, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
July 3-31, 2015, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 14 - Sept. 11, 2015, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Sept. 9-11, 2015, Wed.-Fri. In-person workshop: Introductory Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Sept. 14-16, 2015, Mon.-Wed. In-person workshop: Intermediate Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Sept. 17-18, 2015, Thur.-Fri. In-person workshop: Advanced Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Oct. 16 - Nov. 13, 2015, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Sept. 4 - Oct. 16, 2015, Fri.-Fri. On-line workshop: Rasch Applications, Part 1: How to Construct a Rasch Scale (W. Fisher), www.statistics.com
Oct. 23 - Nov. 20, 2015, Fri.-Fri. On-line workshop: Rasch Applications, Part 2: Clinical Assessment, Survey Research, and Educational Measurement (W. Fisher), www.statistics.com
Dec. 2-4, 2015, Wed.-Fri. In-person workshop: Introductory Rasch (A. Tennant, RUMM), Leeds, UK, www.leeds.ac.uk/medicine/rehabmed/psychometric
Aug. 12 - Sept. 9, 2016, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
The HTML to add "Coming Rasch-related Events" to your webpage is:
<script type="text/javascript" src="http://www.rasch.org/events.txt"></script>

The URL of this page is www.rasch.org/rmt/rmt82c.htm

Website: www.rasch.org/rmt/contents.htm