## Diagnosing Measure Covariance

Careful measurement is aimed at ascertaining the extent or quantity of one particular attribute of something. In practice, this ideal of unidimensional measurement is never achieved. It proves impossible to isolate entirely one attribute from another, e.g., length of steel rods and temperature, or time and very high velocities. In the social sciences, measurement of unintentional combinations of attributes is frequently encountered. This can mislead the unwary into supposing that two different things are the same.

Figure 1 illustrates a situation in which Measure 1 is intended to quantify one attribute and Measure 2 another. Henry& Alred (1996) encountered similar situations during their investigation of Depression and Anxiety. Measure 1 was intended to measure anxiety, but included some depression-sensitive items. Measure 2 was intended to measure depression, but included some anxiety-influenced items. Thus Measure 1 covaried with Measure 2 because both quantify combinations of the two attributes. Usually combinations of two different attributes are noticed because item misfit statistics can classify the items according to their predominant attribute. Also, calibrating the items with samples with different proportions of the two attributes causes obvious shifts in the calibrations.

Suppose, however, that the two attributes have been clearly defined and each measure quantifies only its intended attribute. What if unidimensionality has been achieved, and yet the now clearly unidimensional measures still covary? Can this happen? Unidimensionality does not mean "one dimension totally unlike any other". Rather, unidimensionality means one dimension comprising more or less of the same one quality, however it is defined. This quality may be closely related to other qualities. Height and weight are usually considered distinct qualities, and measured as such, but tall adults are generally heavier than short adults, so that measures of height and weight will covary. Thus measures may covary because the underlying qualities being measured overlap.

Look again at depression and anxiety. These are commonly observed to occur together and may well be manifestations of some more basic psychological state. Their relationship may be that depicted in Figure 2. Measure A focuses sharply on Anxiety, and Measure D focuses sharply on Depression. Both measures are unidimensional, but because the circumstances causing manifestation of the two attributes overlap, the measures covary.

When measures are discovered to covary across attributes, the test developer faces the challenge of constructing items that probe the desired attribute at a more demanding level than its companion attribute. For arithmetic word problems, the arithmetic task must be markedly more demanding than the reading comprehension task. But this requires care. Give arithmetic word problems written in English to a French speaker, and the test no longer measures arithmetic, but rather ESL proficiency.

Based on Henry D. & Alred K. (1996) Measuring Depression in Children with Achenbach's Checklist. MOMS, December 1996.

Diagnosing Measure Covariance. Henry D., Alred K. … Rasch Measurement Transactions, 1997, 11:1 p. 556

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
March 21, 2019, Thur. 13th annual meeting of the UK Rasch user group, Cambridge, UK, http://www.cambridgeassessment.org.uk/events/uk-rasch-user-group-2019
April 4 - 8, 2019, Thur.-Mon. NCME annual meeting, Toronto, Canada,https://ncme.connectedcommunity.org/meetings/annual
April 5 - 9, 2019, Fri.-Tue. AERA annual meeting, Toronto, Canada,www.aera.net/Events-Meetings/Annual-Meeting
April 12, 2019, Fri. On-line course: Understanding Rasch Measurement Theory - Master's Level (G. Masters), https://www.acer.org/au/professional-learning/postgraduate/rasch
May 24 - June 21, 2019, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 22 - 30, 2019, Wed.-Thu. Measuring and scale construction (with the Rasch Model), University of Manchester, England, https://www.cmist.manchester.ac.uk/study/short/intermediate/measurement-with-the-rasch-model/
June 17-19, 2019, Mon.-Wed. In-person workshop, Melbourne, Australia: Applying the Rasch Model in the Human Sciences: Introduction to Rasch measurement (Trevor Bond, Winsteps), Announcement
June 20-21, 2019, Thurs.-Fri. In-person workshop, Melbourne, Australia: Applying the Rasch Model in the Human Sciences: Advanced Rasch measurement with Facets (Trevor Bond, Facets), Announcement
June 28 - July 26, 2019, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
July 2-5, 2019, Tue.-Fri. 2019 International Measurement Confederation (IMEKO) Joint Symposium, St. Petersburg, Russia,https://imeko19-spb.org
July 11-12 & 15-19, 2019, Thu.-Fri. A Course in Rasch Measurement Theory (D.Andrich), University of Western Australia, Perth, Australia, flyer - http://www.education.uwa.edu.au/ppl/courses
Aug 5 - 10, 2019, Mon.-Sat. 6th International Summer School "Applied Psychometrics in Psychology and Education", Institute of Education at HSE University Moscow, Russia.https://ioe.hse.ru/en/announcements/248134963.html
Aug. 9 - Sept. 6, 2019, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
August 25-30, 2019, Sun.-Fri. Pacific Rim Objective Measurement Society (PROMS) 2019, Surabaya, Indonesia https://proms.promsociety.org/2019/
Oct. 11 - Nov. 8, 2019, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Nov. 3 - Nov. 4, 2019, Sun.-Mon. International Outcome Measurement Conference, Chicago, IL,http://jampress.org/iomc2019.htm
Jan. 24 - Feb. 21, 2020, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 22 - June 19, 2020, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 26 - July 24, 2020, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 7 - Sept. 4, 2020, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 9 - Nov. 6, 2020, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 25 - July 23, 2021, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com