Two-Item Testing

What is the shortest useful test? Here is how a test as short as two items can be productive. Imagine that a large sample of people have taken two dichotomous items, A and B, approximately as the Rasch model predicts. Here is the tabulation of their scored responses:

Item B Totals:
Right: 1 Wrong: 0
Item A Right: 1 S11 S10 TA1
Wrong: 0 S01 S00 TA0
Totals: TB1 TB0 T

According to the Rasch model, the difference between the item difficulties is estimated directly by

The sample distribution does not appear! Here is an immediate and useful application of the wonderful and essential sample-distribution-free consequence of the model.

If we think that the sample is normally distributed, then we can estimate the sample mean and standard deviation. The sample mean ability is relative to the average difficulty of the two items. A simulation study suggests the following estimator:

An estimator for sample standard deviation is:

Suppose a normally distributed sample with mean of 1 logit and S.D. of 2 logits, (as shown in the Figure), take a test comprising two dichotomous items. The results for 1,000 examinees are shown in the Table:

Item B Totals:
Right: 1 Wrong: 0
Item A Right: 1 494 221 715
Wrong: 0 81 204 285
Totals: 575 425 1000

Then, the difference between the difficulties of items A and B is loge(81/221) = -1.0 logits. Item A is easier than Item B.

The sample mean is 1.864*[loge(715/285) + loge(575/425)] + 1.455*loge(204/494) 1.0 logits above the mean of the items. So, if the local origin is set at the item mean, Item A is -0.5 logits difficult, Item B is at +0.5 logits, and the sample mean is at +1.0 logits.

The sample standard deviation is 3.763 + 1.4*[loge(494/(1000-494)) + loge(204/(1000-204))] + 0.101*loge²(221/81) + 0.081*[loge²(715/285) + loge²(575/425)] = 2.0 logits. These results are shown in the figure on the previous page.

For tests of more than two items, compute these values for every combination of two items and average them.

If the two items had been previously anchored in a general item bank at D1 and D2, then the location of this sample, in the bank's frame of reference, is given by the linear transformations:

The overall success of recovering generating values in a simulation study is shown in the plots on this page. Data were simulated with a reasonable range of sample means and S.D.s, and also a reasonable range of item difficulties.
Benjamin D. Wright

Two-item testing? Wright B.D. … Rasch Measurement Transactions, 1998, 12:2 p. 627-8.

Please help with Standard Dataset 4: Andrich Rating Scale Model

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez

To be emailed about new material on
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from welcomes your comments:

Your email address (if you want us to reply):


ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website,

Coming Rasch-related Events
Sept. 15-16, 2017, Fri.-Sat. IOMC 2017: International Outcome Measurement Conference, Chicago,
Oct. 13 - Nov. 10, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps),
Oct. 25-27, 2017, Wed.-Fri. In-person workshop: Applying the Rasch Model hands-on introductory workshop, Melbourne, Australia (T. Bond, B&FSteps), Announcement
Jan. 5 - Feb. 2, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps),
Jan. 10-16, 2018, Wed.-Tues. In-person workshop: Advanced Course in Rasch Measurement Theory and the application of RUMM2030, Perth, Australia (D. Andrich), Announcement
Jan. 17-19, 2018, Wed.-Fri. Rasch Conference: Seventh International Conference on Probabilistic Models for Measurement, Matilda Bay Club, Perth, Australia, Website
April 13-17, 2018, Fri.-Tues. AERA, New York, NY,
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps),
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps),
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets),
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps),
The HTML to add "Coming Rasch-related Events" to your webpage is:
<script type="text/javascript" src=""></script>


The URL of this page is