Residual Analysis with Missing Data

I was finally able to run a principle component analysis of Rasch residuals on a large dataset of about 4000 people and 457 items. However, the output look very strange. It produced 3 factors: factor 1 has explained 68.48 of 457 variance units, factor 2 has explained -56.11, and factor 3 has explained -107.27. I am not sure what is the main cause of the negative (and huge) eigenvalues. The data have the weakness that nobody took every item. I also tried to factor analyze the original data with SPSS, but it stopped because there were not enough subjects to analyze. What do you recommend?

Surintorn Suanthong

Missing data always pose a problem in factor analysis because the basis of the methodology is the decomposition of correlations or covariances. There are two main approaches to the problem. Listwise deletion removes from the data every case with a missing data value. A drawback, apparently observed in your SPSS run, is that a large proportion of the cases may be omitted, skewing the results or preventing successful completion of the analysis.

Pairwise deletion skips over individual computations involving missing values. So correlations between pairs of items are computed based on all cases for which data is present for both items. Pairwise deletion can lead to contradictory results:

 Item Responses Pairwise Correlation A B C 01.01... 01....01 ...01.10 AB 1 AC 1 BC -1

Inconsistent matrices of correlations produce negative eigenvalues.

In the analysis of Rasch residuals, there is a useful solution. For each missing residual, impute its expected value of zero. This will force the correlations to be consistent. The zero residuals will dampen the size of factors in the residuals, but will have little effect on the factor structure.

From a small data set, I randomly eliminated 54% of the responses of each respondent. In the residuals from the original data, factors 1 and 2 had eigenvalues of 3.0 and 2.4. Listwise deletion would have eliminated the entire data set. Using pairwise deletion, the eigenvalues were -6.0 and -11.1 with a meaningless factor structure. After imputing zero residuals, the eigenvalues climbed back to 2.0 and 1.5, with a weaker, but still recognizable, factor structure.

John Michael Linacre

Residual Analysis with Missing Data Linacre, J.M. … Rasch Measurement Transactions, 1999, 13:1 p. 679

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Oct. 6 - Nov. 3, 2023, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Facets), www.statistics.com
Oct. 12, 2023, Thursday 5 to 7 pm Colombian timeOn-line workshop: Deconstruyendo el concepto de validez y Discusiones sobre estimaciones de confiabilidad SICAPSI (J. Escobar, C.Pardo) www.colpsic.org.co
June 12 - 14, 2024, Wed.-Fri. 1st Scandinavian Applied Measurement Conference, Kristianstad University, Kristianstad, Sweden http://www.hkr.se/samc2024
Aug. 9 - Sept. 6, 2024, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com