Category, Step and Threshold: Definitions & Disordering

There is ambiguity in the Rasch literature over the use of the terms "Category", "Step" and "Threshold". This leads to enigmatic statements such as "Since the thresholds are disordered, the intended category order has been refuted by the data."

What is a "category"? Agreement is almost universal that it is "a class or division formed for the purposes of discussion or classification" (Webster's New Collegiate). An "ordered category" implies that the categories have been numbered so that a higher numbered category is thought to imply more of the latent variable under investigation. Numerically ordering of categories as qualitative advances along the variable is a prerequisite to Rasch measurement. But, in the course of Rasch analysis, one may discover that the imagined category ordering is not supported by the data. Remedies include renumbering the categories, collapsing adjacent categories or dropping items.

What is a "step"? Here the ambiguity becomes more greater. In some contexts, a step is the transition from one ordered category to the next. This transition can be conceptualized in various ways, often termed "thresholds". In other contexts, steps are the categories renumbered sequentially up from 0.

What are "thresholds"? They are the boundaries between categories. Again they can be conceptualized in various ways. The "Thurstone threshold" for a category corresponds to a point on the variable at which the probability of being observed in that category or above equals that of being observed in the categories below.

The "Rasch-Andrich threshold" is a parameter of a Rasch rating scale model. Here is such a model:

loge(Pnix/Pni(x-1)) = Bn - Di - Fk

The {Fk} are the locations along the latent variable, relative to the item difficulty, at which categories k-1 and k are equally likely to be observed. These {Fk} are known as "step measures", "step calibrations", "step difficulties", "tau parameters", and "Rasch-Andrich thresholds". When each item is conceptualized to have its own rating scale, then Di + Fk becomes Di + Fik, or Dik, as in the "Partial Credit" model. When written as Dik, the thresholds are relative to the overall frame of reference, rather than a particular item.

What about disordering? When the analyst-assigned category order does not accord with the latent variable, then the empirical average measures for each category are out of sequence and there is misfit (RMT 13:1 p. 675). When the thresholds are "Rasch-Thurstone thresholds", then threshold disorder can never be observed. When the thresholds are "Rasch-Andrich thresholds" or "step calibrations", then disordering occurs when some categories never become modal, i.e., they are not observed frequently enough. This implies that they correspond to intervals on the latent variable narrower than about 1 logit in terms of Rasch-Thurstone thresholds.

John Michael Linacre

Category, Step and Threshold: Definitions & Disordering. Linacre J.M. … Rasch Measurement Transactions, 2001, 15:1 p.794

Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
Rasch Books and Publications: Winsteps and Facets
Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Rasch Models for Solving Measurement Problems (Facets), George Engelhard, Jr. & Jue Wang Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan

To be emailed about new material on
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from welcomes your comments:

Your email address (if you want us to reply):


ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website,

Coming Rasch-related Events
May 17 - June 21, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps),
June 12 - 14, 2024, Wed.-Fri. 1st Scandinavian Applied Measurement Conference, Kristianstad University, Kristianstad, Sweden
June 21 - July 19, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Winsteps),
Aug. 5 - Aug. 6, 2024, Fri.-Fri. 2024 Inaugural Conference of the Society for the Study of Measurement (Berkeley, CA), Call for Proposals
Aug. 9 - Sept. 6, 2024, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets),
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps),
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps),
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps),
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets),
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps),


The URL of this page is