# What do Infit and Outfit, Mean-square and Standardized mean?

These are all "fit" statistics. In a Rasch context they indicate how accurately or predictably data fit the model. Dichotomous fit statistics. Polytomous fit statistics.

Infit means inlier-sensitive or information-weighted fit. This is more sensitive to the pattern of responses to items targeted on the person, and vice-versa. For example, infit reports overfit for Guttman patterns, underfit for alternative curricula or idiosyncratic clinical groups. These patterns can be hard to diagnose and remedy.

Outfit means outlier-sensitive fit. This is more sensitive to responses to items with difficulty far from a person, and vice-versa. For example, outfit reports overfit for imputed responses, underfit for lucky guesses and careless mistakes. These are usually easy to diagnose and remedy.

Mean-square fit statistics show the size of the randomness, i.e., the amount of distortion of the measurement system. 1.0 is their expected values. Values less than 1.0 indicate observations are too predictable (redundancy, data overfit the model). Values greater than 1.0 indicate unpredictability (unmodeled noise, data underfit the model). Statistically, mean-squares are chi-square statistics divided by their degrees of freedom. Mean-squares are always positive. Mean-square ranges encountered in practice have been reported at Reasonable Mean-Square Fit Values.

In general, mean-squares near 1.0 indicate little distortion of the measurement system, regardless of the standardized value. Evaluate mean-squares high above 1.0 before mean-squares much below 1.0, because the average mean-square is usually forced to be near 1.0.

Outfit problems are less of a threat to measurement than Infit ones, but are easier to manage. To evaluate the impact of any misfit, replace suspect responses with missing values and examine the resultant changes to the measures.

Standardized fit statistics (Zstd in some computer output) are t-tests of the hypothesis "Do the data fit the model (perfectly)?" These are reported as z-scores, i.e., unit normal deviates. They show the improbability of the data, i.e., its significance, if the data actually did fit the model. 0.0 are their expected values. Less than 0.0 indicates too predictable. More than 0.0 indicates lack of predictability. Standardized values are positive and negative. For the relationship between mean-squares and standardized statistics, see www.rasch.org/rmt/rmt171n.htm

Standardized fit statistics are usually obtained by converting the mean-square statistics to the normally-distributed z-standardized ones by means of the Wilson-Hilferty cube root transformation.

Anchored runs:
Anchor values may not exactly accord with the current data. To the extent that they don't, fit statistics can be misleading. Anchor values that are too central for the current data tend to make the data appear to fit too well. Anchor values that are too dispersed for the current data tend to make the data appear noisy.

John M. Linacre

Mean-square ValueImplication for Measurement
> 2.0Distorts or degrades the measurement system. May be caused by only one or two observations.
1.5 - 2.0Unproductive for construction of measurement, but not degrading.
0.5 - 1.5Productive for measurement.
< 0.5Less productive for measurement, but not degrading. May produce misleadingly high reliability and separation coefficients.

Standardized ValueImplication for Measurement
≥ 3Data very unexpected if they fit the model (perfectly), so they probably do not. But, with large sample size, substantive misfit may be small.
2.0  -  2.9Data noticeably unpredictable.
-1.9  -  1.9Data have reasonable predictability.
≤ -2Data are too predictable. Other "dimensions" may be constraining the response patterns.

What do Infit and Outfit, Mean-square and Standardized mean? Linacre JM. … 16:2 p.878

What do Infit and Outfit, Mean-square and Standardized mean? Linacre JM. … Rasch Measurement Transactions, 2002, 16:2 p.878

Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
Rasch Books and Publications: Winsteps and Facets
Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Rasch Models for Solving Measurement Problems (Facets), George Engelhard, Jr. & Jue Wang Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
May 17 - June 21, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 12 - 14, 2024, Wed.-Fri. 1st Scandinavian Applied Measurement Conference, Kristianstad University, Kristianstad, Sweden http://www.hkr.se/samc2024
June 21 - July 19, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 5 - Aug. 6, 2024, Fri.-Fri. 2024 Inaugural Conference of the Society for the Study of Measurement (Berkeley, CA), Call for Proposals
Aug. 9 - Sept. 6, 2024, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com