## Estimating 50% Cumulative Probability (Rasch-Thurstone) Thresholds from Rasch-Andrich thresholds and vice-versa

Rating scale category boundaries can be conceptualized in a number of ways. L. L. Thurstone (1928) describes the computation of .50 cumulative proportions as "scale values." These scale values are now referred to as Thurstone thresholds. They are also the parameters in the "Graded Response" model.

Rasch rating scale structures are parameterized using the points of equal-probability of adjacent categories, rather than the points of equal probability of accumulated category probabilities. Nevertheless, in communicating Rasch findings, it can be convenient to represent Rasch rating scale functioning in terms of Thurstone- type thresholds.

Rasch polytomous models, such as Andrich "rating scale" or Masters "partial credit" models have the form:

 1

with the usual notation conventions, and Fg0 = 0. Fgj parameterizes the "Rasch-Andrich threshold" or "step", the point of equal probability of categories j-1 and j. The subscript "g" indicates the manner in which the set of {Fgj} parameters relates to the n or i parameters. For the Andrich "rating scale" model, "g" signifies all items. For the Masters' "Partial Credit" model, "g" signifies item i. For Ben Wright's "Style" model, "g" signifies person n. For an instrument in which different groups of items share common rating scales, "g" identifies the item groups.

Let the Rasch-Thurstone-type thresholds be identified as {Tgj} relative to item difficulty, Di. Then

 2

for j=1,m. So that, multiplying through by the normalizer,

 3

Then let

 4

so that, for each of j=1,m,

 5

If the Tgj are specified, then the tj are known, and the ck can be obtained by solving the m simultaneous equations. From the ck, the Fgh can be computed directly. Thus a polytomous Rasch model can be parameterized in terms of Thurstone-type thresholds using matrix notation and Cramer's rule.

On the other hand, if the Fgh are specified, then the ck are known. Each of the m equations becomes a polynomial in tj. The required root always exists. The lower bound of the search for tj is zero (when the polynomial must be positive), and tj can be increased until the polynomial becomes negative. When the value of tj has been found for which the equation is well enough satisfied, then Tgj is computed.

A 3 category, so two threshold, item has Rasch-Andrich thresholds -0.85, 0.85. The lower Rasch-Thurstone-type Threshold is given by j=1:

 6

so that t1 = 0.37, and T1 is -1.0. By symmetry, T2 is +1.0.

Working backwards for the Rasch-Andrich thresholds, if the Rasch-Thurstone-type thresholds are -1, +1, then

 7

So that F1 = loge(1/(e1 - e-1)) = -.85, and F2 = +.85.

John M. Linacre

Thurstone L.L. (1928) Attitudes can be measured. American Journal of Sociology, 33, 529-54.

<

Estimating 50% Cumulative Probability (Rasch-Thurstone) Thresholds. Linacre JM. … Rasch Measurement Transactions, 2003, 16:4 p.901

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
March 21, 2019, Thur. 13th annual meeting of the UK Rasch user group, Cambridge, UK, http://www.cambridgeassessment.org.uk/events/uk-rasch-user-group-2019
April 4 - 8, 2019, Thur.-Mon. NCME annual meeting, Toronto, Canada,https://ncme.connectedcommunity.org/meetings/annual
April 5 - 9, 2019, Fri.-Tue. AERA annual meeting, Toronto, Canada,www.aera.net/Events-Meetings/Annual-Meeting
April 12, 2019, Fri. On-line course: Understanding Rasch Measurement Theory - Master's Level (G. Masters), https://www.acer.org/au/professional-learning/postgraduate/rasch
May 24 - June 21, 2019, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 22 - 30, 2019, Wed.-Thu. Measuring and scale construction (with the Rasch Model), University of Manchester, England, https://www.cmist.manchester.ac.uk/study/short/intermediate/measurement-with-the-rasch-model/
June 4 - 7, 2019, Tue.-Fri.In-Person Italian Rasch Analysis Workshop based on RUMM (entirely in Italian). For enquiries and registration email to workshop.rasch@gmail.com.
June 17-19, 2019, Mon.-Wed. In-person workshop, Melbourne, Australia: Applying the Rasch Model in the Human Sciences: Introduction to Rasch measurement (Trevor Bond, Winsteps), Announcement
June 20-21, 2019, Thurs.-Fri. In-person workshop, Melbourne, Australia: Applying the Rasch Model in the Human Sciences: Advanced Rasch measurement with Facets (Trevor Bond, Facets), Announcement
June 28 - July 26, 2019, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
July 2-5, 2019, Tue.-Fri. 2019 International Measurement Confederation (IMEKO) Joint Symposium, St. Petersburg, Russia,https://imeko19-spb.org
July 11-12 & 15-19, 2019, Thu.-Fri. A Course in Rasch Measurement Theory (D.Andrich), University of Western Australia, Perth, Australia, flyer - http://www.education.uwa.edu.au/ppl/courses
Aug 5 - 10, 2019, Mon.-Sat. 6th International Summer School "Applied Psychometrics in Psychology and Education", Institute of Education at HSE University Moscow, Russia.https://ioe.hse.ru/en/announcements/248134963.html
Aug. 9 - Sept. 6, 2019, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
August 25-30, 2019, Sun.-Fri. Pacific Rim Objective Measurement Society (PROMS) 2019, Surabaya, Indonesia https://proms.promsociety.org/2019/
Oct. 11 - Nov. 8, 2019, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Nov. 3 - Nov. 4, 2019, Sun.-Mon. International Outcome Measurement Conference, Chicago, IL,http://jampress.org/iomc2019.htm
Jan. 24 - Feb. 21, 2020, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 22 - June 19, 2020, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 26 - July 24, 2020, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 7 - Sept. 4, 2020, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 9 - Nov. 6, 2020, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 25 - July 23, 2021, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com