Constructing Scientific Measurement Models

The aim of the scientific process is, in some sense, to predict the future. It may be a future-in-the-past, for instance an eclipse of the sun that occurred in Ireland in 688 A.D., or it may a future-yet-to-happen. Scientific models deliberately embody simplified, but manageable, versions of reality. Henry David Thoreau wrote a universal truth in another context: "Our life is frittered away by detail ... Simplify , simplify." If we attempt to include every possible detail into our analysis, we exhaust ourselves and obtain results that are so specific as to become merely restatements of the original details.

Thus the scientific challenge is to formulate models general enough to encompass the scope of situations usually encountered, but specific enough to give practical and useable guidance in the outcomes to be expected in those situations. Thus the scientific model embodies a theory about the relationships that generate the data. Of course, the predicted outcomes only approximate the actual ones. "Empirical problems are frequently solved because, for problem solving purposes, we do not require an exact, but only an approximate, resemblance between theoretical results and experimental ones." (Laudan, 1977). Indeed "in many aspects of statistics it is necessary to assume a mathematical model to make progress." (Draper and Smith, 1966).

There are an infinity of possible models that generate outcomes which approximate the data, so which ones to choose? There is no absolute or correct answer, but there is the answer of utility. "All science is only a refinement of everyday thinking" (Einstein, 1936). The more generally applicable the model, and the more useable the results, the more it is likely to meet practical needs and form the basis for scientific progress. William of Ockham suggests that "What can be accounted for by fewer assumptions is explained in vain by more." Scientists are also generally comfortable performing arithmetical operations. "Measurement is primarily a device which enables us to use the laws of arithmetic to solve problems relating to phenomenal events" (Guild, 1938). Accordingly, a good starting point would be to look for models with as few parameters as possible within a framework that can be manipulated by arithmetical operations.

Classical test theory (CTT) appears to meet these requirements. In fact, it is almost ubiquitously used for summarizing and reporting the results of scoreable tests. Its strength is that the outcome of a test for an examinee can be expressed as one number which has at least the arithmetical properties of rank order, and often approximates linearity. CTT fails when results must be compared across tests, or there is missing data, or score differences within a test need to be compared, or when ...

Rasch's insight was that a simple logistic transformation overcomes the obvious predictive flaws of CTT. The logistic transformation is mathematically tractable, and yet, as Derek de Solla Price observed, it underlies a multitude of natural process.

Under many circumstances, merely replacing a reported percent with
Measure = 50 + 25 * Log10 ( %Right / %Wrong )
will approximate linearity will enough.

John Michael Linacre

Draper, N. R., & Smith, H., Jr. (1966) Applied Regression Analysis. New York: Wiley.

Einstein, A. (1936) Physics and reality. Journal of the Franklin Institute, 221. Translated by Syllabus Division, University of Chicago.

Guild, J. (1938) Are Sensation Intensities Measurable? Report of the 108th Annual Meeting of the British Association for the Advancement of Science, Cambridge.

Laudan, L. (1977) Progress and its Problems. Berkeley, CA: University of California Press.

Price, D. J. de Solla (1986) Little Science, Big Science ... and Beyond. New York: Columbia University Press.


Constructing Scientific Measurement Models. J.M. Linacre … Rasch Measurement Transactions, 2003, 17:1, 907



Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
Rasch Books and Publications: Winsteps and Facets
Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Rasch Models for Solving Measurement Problems (Facets), George Engelhard, Jr. & Jue Wang Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

www.rasch.org welcomes your comments:

Your email address (if you want us to reply):

 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt171f.htm

Website: www.rasch.org/rmt/contents.htm