The Saltus Model

A fundamental concept underlying most Rasch model applications is Thurstone's 1928 precept: "Within the range of objects for which the measure instrument is intended, its function must be independent of the object of measurement." (American J. of Sociology, 33, 529-554)

But what if this isn"t so? What if there are two or more types of person to be measured for which the measuring instrument behaves differently? For instance, a language test administered to native and non-native speakers. If the persons can be separated by type, then an immediate solution is to construct a measuring system for each type. If the persons can"t be separated, then there is a "mixture" situation. One population (or type) of persons is mixed with another.

A particular "mixture" is that addressed by the Saltus (Lat. "leap") model (Wilson, 1989). The persons are at different levels of psychological development - and the leap from one level to the next changes the way in which the measuring instrument operates. We can guess an individual's level, but not with certainty. We assume that we can identify those items which we expect to operate differently for persons at different levels.

In the simplest case, it is hypothesized that, at each level, the persons can be treated as randomly sampled from a normally distributed population, with a specific mean and standard deviation for that level. Also, while in other mixture models, each dichotomous item has a specific difficulty calibration for persons at that level, the Saltus model is simpler and estimates a much smaller number of parameters: the amount (measured in logits) that each set of items "shifts" in difficulty when encountered by persons in each level.

Thus what needs to be estimated are:
(a) The mean and standard deviation of each level's sample.
(b) The proportion of the total sample at each level.
(c) The difficulty calibration of each item at each level.

An estimation approach is to apply the MMLE (marginal maximum likelihood) formulation with an EM (expectation-maximization) algorithm. At each point, some of the parameters are estimated while others are held steady. Generally this process converges to a stable set of estimates.

From the final estimates, the probability that any particular person belongs to any particular level can be computed. These probabilities can be summed, so that, for instance, the proportion of second-grade boys at a particular level can also be estimated. For individual reporting purposes, it is conventional to consider each person to be at the level with the highest probability for that person, although some people may have a profile of probabilities that are fairly equal across levels.

Mark Wilson kindly assisted with this description.

Mislevy, R.J., & Wilson, M. (1996). Marginal maximum likelihood estimation for a psychometric model of discontinuous development. Psychometrika, 61(1), 41-71.

Wilson, M. (1989). Saltus: A psychometric model for discontinuity in cognitive development. Psychological Bulletin, 105, 276-289.

Wilson M. & Draney K. (1997) Partial credit in a developmental context: the case for adopting a mixture model approach. Chap. 18 in M. Wilson, G. Engelhard, Jr., K Draney, Objective Measurement: Theory into Practice, vol. 4. Greenwich CT: Ablex.

A computer program for estimating this model (and a polytomous version) is available from Karen Draney (kdraney at clink.berkeley.edu).


Results of a dichotomous Saltus analysis (Wilson & Draney, 1997)

Items CS1-4 are shown at their difficulty levels for Class 1 (to left) and Class 2 (to right) in the same frame of reference. In this unusual example, the items are more difficult for the higher ability class, because their increased knowledge misleads them into using an incorrect answering strategy.

The Saltus Model, Wilson M. … Rasch Measurement Transactions, 2004, 17:4 p.953




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt174c.htm

Website: www.rasch.org/rmt/contents.htm