Predicting Measures from Rating Scale or Partial Credit Categories
for Samples and Individuals

We have collected data and analyzed it. We believe that the our findings are a reasonable basis for predicting the future. Now we want to make that prediction.

Here is what our analysis has told us about a particular partial-credit item of our instrument:

Observed Partial Credit CategoryObserved frequencyObserved sample average measureExpected sample average measureMean Expected rating measureMedian Rasch-Thurstone thresholdModal (Rasch-Andrich?) threshold
---
2
---
3
14%
---
26%
---
60%
-.51
---
.39
---
.73
-.42
---
.04
---
.86
(-2.22)
-1.50
-.61
.28
(1.00)
---
-1.18
---
-.04
---
---
-.79
---
-.43
---

Our example uses a partial-credit item, but this discussion is equally applicable to predicting from "rating scale" data, and much of it applies to dichotomous data.

I. Sample-level

A. The conventional descriptive-statistical approach of, for instance, Generalizability Theory, is to assume that the next sample will exactly resemble the current one. In which case, the first three columns will suffice. For persons rated in category 1, we would predict a measure of -.51, which was the average measure of those observed in category 1 of this item in the earlier sample.

B. The earlier sample performed largely as the Rasch model predicts, but not exactly. We assume that the next sample will have the same measure distribution and exhibit the same Rasch-coherent behavior as the earlier sample, but the next sample's idiosyncratic non-Rasch behavior is unpredictable. In which case, the fourth column, the "expected sample average measure" is our prediction. It reflects only the Rasch-coherent aspect of the current sample. We expect that the next sample will exhibit small, but different, idiosyncratic departures from these measures, but, since we don't know what these idiosyncrasies will be, for persons rated in category 1, we would predict a measure of -.42, which would have been the average measure of those observed in category 1 of this item in the earlier sample, if that sample had followed exact Rasch-model predictions.

II. Individual-level

We expect the next person to behave in the same Rasch-conforming way as the previous sample, but we can make no distributional assumptions relevant to the next person. This is sometimes called a "non-informative Bayesian prior" and parallels our use of a tape measure or bathroom scale.

C. For the next individual who receives a rating of 2, we predict the measure corresponding to the point on the latent variable where a rating of 2 is most probable to be observed. This is -.61, its "expected rating measure". From this perspective, the measures corresponding to extreme categories, 1 and 3, are infinite, so the "expected rating measure" reported in the Table for category 1 corresponds to an expected rating of 1.25 (at measure -2.22), conceptually half-way between 1 and 1.5 (at measure -1.50), a boundary between category 1 and category 2. Similarly for category 3, the reported expected rating is for 2.75 (at measure 1.00).

D. Our prediction for a person in a particular category is the range of measures for which there is a 50% or greater chance that the person would be observed in this category or above, and also a 50% or greater chance that the person would be observed in this category or below. For this, the range boundaries are the Rasch-Thurstone thresholds. In our Table, the range of measures for category 1 would be from -infinity to -1.18. These values appear on cumulative probability plots as the points where a .5 probability line intercepts the cumulative curves.

E. Our prediction is the range of measures for which the observed category is the most likely category to be observed. These are the modal thresholds, and correspond to the Rasch-Andrich thresholds (when those are ordered). When the Rasch-Andrich thresholds are disordered, some categories will never be the ones most likely to be observed. In our Table, the range of measures for category 1 would be from -infinity to -.79. These values appear on category probability plots as the abscissae of the points where the probability curves for modal categories meet.

F. Our prediction is the range of measures for which the average rating is in the neighborhood of this category. The Rasch model predicts the probability of any category being observed anywhere along the latent variable. From these probabilities, the average value of the ratings at any point along the variable can be predicted. For any intermediate category, its neighborhood can be defined as the interval from "category value - 0.5" to "category value + 0.5". For extreme categories, the outer ends of the intervals are infinite. These "neighborhoods" are shown as transition values in the Mean column. . Here, the range of measures for category 1 would be from -infinity to -1.50. These values can be seen on the "expected score ogive" (the "model" item characteristic curve).

John Michael Linacre


Predicting Measures from Rating Scale or Partial Credit Categories for Samples and Individuals, Linacre J.M., … Rasch Measurement Transactions, 2004, 18:1 p.972



Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
Rasch Books and Publications: Winsteps and Facets
Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Rasch Models for Solving Measurement Problems (Facets), George Engelhard, Jr. & Jue Wang Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

www.rasch.org welcomes your comments:

Your email address (if you want us to reply):

 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt181j.htm

Website: www.rasch.org/rmt/contents.htm