# Dichotomous Equivalents to Rating Scales

There are numerous ways to conceptualize rating scales. One useful conceptualization is to imagine that the rating scale is equivalent to a set of dichotomous items. Huynh Huynh investigated this: Huynh H. (1994) On equivalence between a partial credit item and a set of independent Rasch binary items. Psychometrika, 59, 111-119, and Huynh H. (1996) Decomposition of a Rasch partial credit item into independent binary and indecomposable trinary items. Psychometrika, 61, 31-39.

A crucial finding is that the Rasch-Andrich thresholds must advance (i.e., not exhibit "threshold disordering") for a polytomy to have the mathematical properties of a set of dichotomies. But merely advancing is not enough.

Consider a polytomy with m+1 ordinally advancing categories. There are m transition points, so this could be conceptualized as m dichotomies. As the Rasch-Andrich thresholds for the polytomy become further apart then the set of dichotomous items would have a wider difficulty range. The boundary condition is that the m dichotomies be of equal difficulty. Then a score of k on the polytomous item would be equivalent to scoring k on m equally-difficulty dichotomies.

A set of equally difficulty dichotomies constitute a set of Bernoulli (binomial) trials. The polytomous Rasch model for this is (with the familiar notation):

This provides the lower limits by which Rasch-Andrich thresholds must advance in order that a polytomy have the same mathematical properties as a set of dichotomies. A useful rule-of-thumb is "thresholds must advance by one-logit". The exact values are tabulated below.

John Michael Linacre

Minimum Rasch-Andrich threshold advances for a polytomy to be equivalent to a set of dichotomies
Thresholds:------Categories:1 to 22 to 33 to 44 to 55 to 66 to 77 to 88 to 99 to 10
31.39
41.101.10
5.98.81.98
6.92.69.69.92
7.88.63.58.63.88
8.85.59.51.51.59.85
9.83.56.47.45.47.56.83
10.81.54.44.41.41.44.54.81
11.80.52.42.38.36.38.42.52.80

Dichotomous Equivalents to Rating Scales, Linacre J.M. … Rasch Measurement Transactions, 2006, 20:1 p. 1052

Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
Rasch Books and Publications: Winsteps and Facets
Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Rasch Models for Solving Measurement Problems (Facets), George Engelhard, Jr. & Jue Wang Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
May 17 - June 21, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 12 - 14, 2024, Wed.-Fri. 1st Scandinavian Applied Measurement Conference, Kristianstad University, Kristianstad, Sweden http://www.hkr.se/samc2024
June 21 - July 19, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 5 - Aug. 6, 2024, Fri.-Fri. 2024 Inaugural Conference of the Society for the Study of Measurement (Berkeley, CA), Call for Proposals
Aug. 9 - Sept. 6, 2024, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com