Standard Errors and Reliabilities: Rasch and Raw Score

Question: I was taught that all raw scores on a test have the same raw score standard error, SEM, and this is:
SEM = raw score S.D. * sqrt (1-Reliability).
Why do standard errors for person measures differ?

Answer: The raw score "test" reliability (Cronbach Alpha, KR-20, etc.) is based on an average standard error of the raw scores for the sample. Each different raw score on the same set of items has a different standard error. The raw score standard errors are biggest at the center of the test and smallest (zero) at the extreme maximum and minimum scores. Using Bernoulli theory, CTT could compute a standard error for each different raw score, but no one bothers. In contrast, the standard error of a Rasch measure is smallest in the center of the test and biggest at the extremes. Zero and perfect raw scores have raw score standard errors of zero, but the corresponding Rasch measures have infinite standard errors. Since infinity is an impractical number, infinity is usually replaced by the standard error for a conceptual raw score slightly more central by 0.3 score-points, or so, than the maximum or minimum possible raw score.

The plot showns the relationship between the raw score S.E. and the Rasch measure S.E. for a 30 item dichotomous test. The shape of the raw-score S.E. curve can be confirmed by computing the square-root of the binomial variance of each raw score, assuming that the 30 items are equally difficult:

S.E. of measurement of raw score n, corresponding to person ability estimate θ, where L is the number of equally difficult dichotomous items in the test. (If the item difficulties vary, then the following logic is the same, but the arithmetic is a little more difficult.)
Probability of success on one equally-difficult item, P = n/L
Binomial variance of response to 1 item = P*(1-P)
Binomial variance of L items = L*P*(1-P) = Test information at score n or ability θ
Classical Test Theory (CTT) SEM for raw score n = √( L*P*(1-P) ) = √( n * (L-n) / L)
Rasch measure SEM for ability estimate θ corresponding to raw score n = 1 / √( L*P*(1-P) ) = 1 / √( n * (L-n) / L)

Notice that SEM(Raw Score n) ≈ 1 / ( SEM(Rasch Measure θ in logits) )
and
SEM(Rasch Measure θ in logits) ≈ 1 / ( SEM(Raw Score n) )

Classical Test Theory (CTT) computes a "test" reliability = R. From this, an average SEM (standard error of measurement) of the raw scores can be estimated:
Average raw-score SEM = √(1-R) * (observed raw score S.D.).

Rasch computes an S.E. = SEM for each measure. But, like the raw score reliability, the Rasch reliability is also based on the average of the standard errors of the sample ability estimates, θs.


Standard Errors and Reliabilities: Rasch and Raw Score, Rasch Measurement Transactions, 2007, 20:4 p. 1086



Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt204f.htm

Website: www.rasch.org/rmt/contents.htm