Question: Lumsden, J. (1978). Tests are perfectly reliable. British Journal of Mathematical and Statistical Psychology, 31, 19-26, states that "test scaling models are self-contradictory if they assert both unidimensionality and different slopes for the item characteristic curves." Do differences in item discrimination always indicate multidimensionality?
Answer: In situations like this, it is helpful to think of parallels in physical measurement. Suppose we are measuring length with old-fashioned cloth tape-measures. These can become stretched along parts of their range. If we compared measurements of lengths with two of these stretched tape measures, we would see that, to start with, they would say the same numbers. Then the less-stretched tape measure would have higher numbers, i.e., be more discriminating. Then they might agree again. Then the other tape measure might have higher numbers. Length is unidimensional, but the "tape measure ICCs" cross, perhaps several times along their lengths. We could call "stretching", i.e., changes of length-discrimination, another dimension, in the same sense as "guessing" is another dimension. But these are not usually what is mean by "multidimensionality".
On the other hand, we might have two good cloth tape measures, but they might not always be parallel or straight. They might "snake" somewhat as we use them. Again they would sometimes agree and sometimes disagree due to crisscrossing "tape measure ICCs". Here we could agree that the problem is "multidimensionality". The tape measures are not in a straight line.
Varying Item Discrimination = Multidimensionality? Rasch Measurement Transactions, 2007, 21:2 p. 1104
Forum | Rasch Measurement Forum to discuss any Rasch-related topic |
Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement
Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.
Coming Rasch-related Events | |
---|---|
Apr. 21 - 22, 2025, Mon.-Tue. | International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net |
Jan. 17 - Feb. 21, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
Feb. - June, 2025 | On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia |
Feb. - June, 2025 | On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia |
May 16 - June 20, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
June 20 - July 18, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com |
Oct. 3 - Nov. 7, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
The URL of this page is www.rasch.org/rmt/rmt212h.htm
Website: www.rasch.org/rmt/contents.htm