Re-Parameterization of the Partial Credit Model
for Estimating Items with Large Values of Maximum Marks

The conventional formulation of Partial Credit Model (PCM) is as follows:


where Pk(λ) is the probability of a student with ability λ obtaining the score k on an item with minimum mark equal to 0 and maximum mark equal to m, and {tj} are the non-centralized thresholds (= centralized threshold + item difficulty).

It can be observed that when the maximum mark of an item equals to m, the number of parameters that need to be estimated is also exactly equal to m. When m is very large (e.g., 20 or 30) which may not be uncommon for a non-multiple-choice item, the number of parameters subject to estimation may cause great problems or even a breakdown of commonly available software. In this brief note, a re-parameterization of PCM is proposed in order to cater for items with large values of maximum marks.

Re-parameterization of PCM

We re-formulate PCM using 4 parameters (S,q, d, c), at most, for items with any values of maximum marks. The idea of the re-formulation is shown in the following diagram:


S: The start point

θ: The first interval (i.e., θ1=θ and θi+1=θi+di where i ≥ 1)

d: The change applied to the first interval to obtain the second one (i.e., d1=d)

c: The variation of the change as compared with only the previous change (i.e. di+1=di+c where i ≥ 1)

Note that an approximation (i.e., assuming that the same c is applied for different di) is adopted here. By using the approximation, 4 parameters are enough to generate all the thresholds. The derivations of some thresholds are shown below:

t1 = S

t2 = S + θ1 = S + θ

t3 = S + θ1 + θ2 = (S + θ) + (θ 1+ d1) = S + 2θ + d

t4 = S + θ1 + θ2 + θ3 = (S + 2θ + d) + (θ2+d2) = (S + 2θ + d) + (θ 1+ d1+d1+c) =(S + 2θ + d) + (θ + 2d + c) = S + 3θ + 3d + c

It can be shown (by the use of mathematical induction) that the general form is:

tj = S + (j-1)θ + (j-1)(j-2) d /2 + (j-1)(j-2)(j-3)c /6

Based on the general form, we can immediately derive the following:

= kS + k(k-1)θ /2 + k(k-1)(k-2)d/6 + k(k-1)(k-2)(k-3)c/24

Therefore PCM can now be re-formulated using only the 4 parameters: S,θ, d, c.

Parameter Estimation using WinBugs

The estimation of the re-formulated parameters can be achieved directly using the freeware WinBugs. As an illustration, the relevant code to set up the probability model for an item with maximum mark equal to 18 in WinBugs is shown in Figure 2.

In addition, non-informative prior distributions are set up for the parameters concerned. The corresponding WinBugs code is shown in Figure 3.

Then the parameter estimation can be conducted using the built-in Markov Chain Monte Carlo (MCMC) method in WinBugs. The student ability and item parameters (from which all tj are derived) can be obtained.

We have applied this novel formulation of PCM to model responses of two items (one is Short Q and the other is Long Q) in the trial run of a test attempted by some 200 students. Short Q has maximum mark equal to 18 and Long Q has maximum mark equal to 20. The outcomes shown in Figure 1 are satisfactory.

All the values of the standard PCM thresholds tj derived from these re-formulated parameters (S, θ, d, c) are provided in Figure 4; together with frequency counts for different response categories.

Summary

In this brief note, we have proposed a novel re-parameterization for PCM in order to handle items with large values of maximum marks. The parameter estimation could be conducted using the freeware, WinBugs. We have applied the re-parameterization to model item responses in some real-life data. The outcomes of the estimations are satisfactory.

Dr. Fung Tze-ho
Manager-Assessment Technology & Research,
Hong Kong Examinations and Assessment Authority

QuestionSqdcInfit Mean-squareOutfitMean-square
Short Q-1.4990.03470.01600.00010.961.00
Long Q-1.4340.09880.00280.00030.760.80

Figure 1. WinBugs parameter estimates and fit statistics.


for (i in 1:N) { # N Students

num.p1[i, 1]<-1

for (j in 1:18){ # An item with max mark = 18

fac11[i,j] <-j*base[1] # base[1]:S parameter

fac12[i,j]<-j*(j-1)*int[1]/2 # int[1]:q parameter

fac13[i,j]<-j*(j-1)*(j-2)*dev[1]/6 # dev[1]:d parameter

fac14[i,j]<-j*(j-1)*(j-2)*(j-3)*chg.dev[1]/24 # chg.dev[1]:c parameter

num.p1[i, j+1] <- exp(j*lambda[i] - (fac11[i,j] +fac12[i,j] + fac13[i,j] + fac14[i,j] ))}

den.p1[i] <- sum(num.p1[i,1:19] )

for (j in 1:19){p1[i,j] <- num.p1[i,j]/ den.p1[i] } } # normalization

for (i in 1:N)

{r[i, 1] ~ dcat(p1[i, 1:19 ])} # define a categorical distribution

# r[i,1] is the response of student i to the item

Figure 2. WinBugs code for reparameterized PCM with categories 0-18.


for (i in 1:N){lambda[i] ~ dnorm(0, tau.lambda)}

for (j in 1:T){

base[t] ~ dnorm (mu.Base, tau.Base)

int[t] ~dnorm(mu.Int, tau.Int )I(0,)

dev[t]~dnorm(mu.Dev,tau.Dev)

chg.dev[t]~dnorm(mu.Chg, tau.Chg)

}

tau.lambda ~ dgamma(0.001, 0.001)

mu.Base ~ dnorm(0, 1.E-6)

tau.Base ~ dgamma(0.001, 0.001)

mu.Int ~ dnorm(0, 1.E-6)

tau.Int ~ dgamma(0.001, 0.001)

mu.Dev ~ dnorm(0, 1.E-6)

tau.Dev ~ dgamma(0.001, 0.001)

mu.Chg ~ dnorm(0, 1.E-6)

tau.Chg ~ dgamma(0.001, 0.001)

Figure 3. WinBugs code for non-informative priors.


Response CategoryFrequency Count for Short QFrequency Count for Long QDerived PCM ThresholdShort QLong Q
000---
113t1-1.50-1.43
211t2-1.46-1.34
313t3-1.41-1.23
404t4-1.35-1.13
553t5-1.26-1.02
655t6-1.16-0.91
759t7-1.05-0.79
8915t8-0.92-0.67
91511t9-0.77-0.55
101722t10-0.60-0.42
112419t11-0.42-0.29
124029t12-0.22-0.15
132619t130.00 0.00
142718t140.23 0.15
152017t150.48 0.31
162517t160.75 0.47
17512t171.03 0.65
18316t181.34 0.82
19-3t19-1.01
20-3t20-1.20
Total229229Average-0.46-0.27

Figure 4. PCM thresholds for 19 categories (Short Q) and 21 categories (Long Q).

Note that category 0 is not observed, and nor is category 4 for Short Q. The reparameterized estimation is robust against unobserved categories.



Re-Parameterization of the Partial Credit Model for Estimating Items with Large Values of Maximum Marks, Fung Tze-ho ... Rasch Measurement Transactions, 2011, 24:4, 1301-2




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt244a.htm

Website: www.rasch.org/rmt/contents.htm