A Comment on the HT Person Fit Statistic

The non-parametric HT fit statistic (Sijtsma, 1986) is a transposed formulation of Loevinger's H scalability coefficient for items. It is evaluated by Karabatsos (2003). He reports "Overall, the HT statistic is best [of 36 person fit statistics] in identifying aberrant test respondents. It is also among the best in detecting each of the five different types of aberrant-responding examinees, and in detecting such examinees in each of the short, medium, and long test conditions."

HT is defined for the rows (persons) of a complete rectangular dichotomous dataset.. Let us focus on person n in a dataset which has L items and N persons. Then, following Karabatsos (2003),

HT person fit statistic

where Xni is the scored (0,1) response of person n to item i, and Pn = Sn/L where Sn is the raw score of person n, and similarly for person m.

HT is the sum of the covariances between person n and the other persons divided by the maximum possible sum of those covariances, so that the range of HT is -1 to +1. When the responses by person n are positively correlated with all the other persons, then HT(n) will be positive. When person n is negatively correlated with all the other persons, then HT(n) will be negative. When personn's responses are random, HT(n) will be close to zero. When the data fit the Rasch model, we expect HT(n) to be somewhat positive, because all the person response strings will correlate positively with the item-easiness hierarchy, and so positively with each other.

According to Karabatsos (2003), "the critical values HT = .22 best identify aberrant-responding examinees." In my own informal analyses, the correlation between HT and the Rasch Infit mean-square was about -0.9, but I was unable to identify a unique Infit mean-square value corresponding to HT = .22. Since Sijtsma and Molenaar (2002) report 0.3 to be a critical value for coefficient H, a small simulation study may be required to determine the critical value of HT for a specific empirical dataset.

John Michael Linacre,/p>

Karabatsos, G. (2003). Comparing the aberrant response detection performance of thirty-six person-fit statistics. Applied Measurement in Education, 16(4), 277-298.

Sijtsma, K. (1986). A coefficient of deviant response patterns. Kwantitative Methoden, 7, 131-145.

Sijtsma K,, Molenaar I.W. (2002). Introduction to Nonparametric Item Response Theory. Thousand Oaks, CA: Sage.



A Comment on the HT Person Fit Statistic, J.M. Linacre, Rasch Measurement Transactions, 2012, 26:1, 1358




Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
Rasch Books and Publications: Winsteps and Facets
Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Rasch Models for Solving Measurement Problems (Facets), George Engelhard, Jr. & Jue Wang Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

www.rasch.org welcomes your comments:

Your email address (if you want us to reply):

 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt261f.htm

Website: www.rasch.org/rmt/contents.htm