Variance in Mathematics and Reading across Grades: Grade Equivalents and Logits

Does schooling make students more alike or more different? In 1916, Woody assumed within-grade variance in student performance to be constant across grades for his arithmetic tests. Thurstone, however, reanalyzing Woody's data in 1928, reported a "striking increase in absolute variability through the grades." A widely held view is that: "Variability is lowest in the lowest grades, when children are uniform in beginning their education. In later, grades, some have progressed much more than others, and the variability increases markedly" (Hills, 1976, p. 163).

A recent Rasch equating study of the Iowa Test of Basic Skills (forms CPS90 and CPS91) for math and reading, based on a cross-sectional sample of students in Grades 1 through 8 from the Chicago Public Schools, sheds light on this question.

The Figures show plots of person measures in each grade. Increase in ability in math, Figures 1 and 2, is fairly uniform across grades. This constant increase in math ability is not surprising because math learning does not approach a ceiling during a student's school career. There is always more math to learn.

Reading ability, Figures 4 and 5, however, increases more rapidly than math up to the third grade and thereafter more slowly.

Figures 3 and 6 show how the standard deviations of the person measures in math and reading vary with grade. We expect students from various backgrounds to begin school with varied abilities in subjects for which they have not had formal instruction such as math. As they progress in the grade, however, we expect students to become more homogeneous as they learn and practice on a subject. This will continue until a new topic is introduced. Then students can be expected to disperse.

Figure 3 implies that new math topics are introduced in the third grade. Students' math ability standard deviation decreases in the second grade as addition and subtraction are mastered, but increases in the third grade as long division looms. The math standard deviation then remains somewhat constant for grades 4 through 7, increasing slightly in grade 8.

Reading, on the other hand, reaches a steady state for most children. New words may be learned in each grade, but styles, techniques, and methods remain the same. As students move up in the grades, their reading standard deviations can be expected to decrease. Students begin their formal instruction on reading in the first grade. It is not surprising to see their standard deviation going up slightly by second grade. This can be seen in Figure 6. But, after the second grade, reading standard deviation begins to decrease.

Hills JR 1976 Measurement and Evaluation in the Classroom. Columbus, OH: Charles E. Merrill

Thurstone LL 1928 Scale construction with weighted observations. Journal of Educational Psychology 19, 7, 441-453.

Variance in Mathematics and Reading across Grades: Grade Equivalents and Logits, O K Lee … Rasch Measurement Transactions, 1992, 6:2 p. 222-3

Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
Rasch Books and Publications: Winsteps and Facets
Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Rasch Models for Solving Measurement Problems (Facets), George Engelhard, Jr. & Jue Wang Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan

To be emailed about new material on
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from welcomes your comments:

Your email address (if you want us to reply):


ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website,

Coming Rasch-related Events
May 17 - June 21, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps),
June 12 - 14, 2024, Wed.-Fri. 1st Scandinavian Applied Measurement Conference, Kristianstad University, Kristianstad, Sweden
June 21 - July 19, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Winsteps),
Aug. 5 - Aug. 6, 2024, Fri.-Fri. 2024 Inaugural Conference of the Society for the Study of Measurement (Berkeley, CA), Call for Proposals
Aug. 9 - Sept. 6, 2024, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets),
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps),
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps),
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps),
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets),
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps),


The URL of this page is