Foundations of Inference

There are four obstacles to inference which science must overcome.

OBSTACLESSOLUTIONSORIGINATORS
UNCERTAINTY
have => want
now => later
statistic => parameter
PROBABILITY
distribution
regular irregularity
misfit detection
Bernoulli 1713
De Moivre 1733
Laplace 1774
Poisson 1837
DISTORTION
non-linearity
unequal intervals
incommensurability
ADDITIVITY
linearity
arithmetic
concatenation
Luce/Tukey 1964
Fechner 1860
Helmholtz 1887
N.Campbell 1920
CONFUSION
interdependence
interaction
confounding
SEPARABILITY
sufficiency
invariance
conjoint order
Rasch 1960
R.A.Fisher 1920
Thurstone 1925
Guttman 1944
AMBIGUITY
arbitrary grouping
ambiguous hierarchy
DIVISIBILITY
independence
stability
reproducibility
exchangeability
Kolmogorov 1932
Levy 1924
Bookstein 1992
de Finetti 1931

1. Uncertainty is the motivation for inference. We have only the past with which to foresee the future. The past may seem certain. But, on reflection, it is realized to have been not only unique and unrepeatable - awash in special circumstances and inexplicable outcomes - but also a mere interpretation. In order to generalize the problematic past, we invent probability distributions that describe how idiosyncratic data can result from regular processes. It is probability that enables us to make the past useful for predicting the future.

2. Distortion occurs during the transition from observation to conceptualization. Data have no meaning of their own, they must always be interpreted. This interpretation is expedited when we transform our data in ways that facilitate thinking. Our ability to figure things out is rooted in our ability to visualize. Our ability to visualize devolved from the survival value of bodily navigation. Thus, the best solution to distortion is to represent observations in a linear, i.e., additive, form that makes our observations look like the space in front of us. To "see" what our data "mean", we "picture" them.

3. Confusion is caused by the inevitability of inter-action and interdependency. Raw data are too complicated to understand. Each data point indicates many things, intended and unintended. As we look for tomorrow's probabilities in yesterday's lessons, confounding confuses us. Our solution is to force the endless complexity we experience into only a few invented "dimensions", few enough that we can think clearly with them. The authority of these fictions is their logic and utility. Their "truth" is intangible. What matters is whether they work - a consequence discoverable in future experience.

The logic necessary to control confounding is enforced singularity. Define and measure one dimension at a time. The mathematics necessary is parameter separability. Only models which introduce hypothesized "causes" as separately estimable parameters survive confounding. The models which do this are the founding laws of quantitative research. They define measurement. They determine what is measurable. They decide which data are useful.

4. Ambiguity, a different form of confusion, is also present, because we never know precisely what to count or at what level of detail. To measure traffic, do we count cars or passengers? Do we rate performance holistically or itemize? Robust inference requires that incidental changes in data collection cause no change in inference. Ambiguity is controlled by measurement models that possess divisibility and thus are stable with respect to arbitrary composition. Divisibility, the solution to ambiguity, is algebraically equivalent to separability, the solution to confusion.

The Table summarizes the obstacles to inference, their current solutions and the originators of these solutions.

Benjamin D. Wright 1994 RMT 8:1 p. 346


Foundations of inference. Wright BD. … Rasch Measurement Transactions, 1994, 8:1 p.346



Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
Rasch Books and Publications: Winsteps and Facets
Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Rasch Models for Solving Measurement Problems (Facets), George Engelhard, Jr. & Jue Wang Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

www.rasch.org welcomes your comments:

Your email address (if you want us to reply):

 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt81n.htm

Website: www.rasch.org/rmt/contents.htm