Rasch Dimensional Analysis

Rasch dimensional analysis. Moulton MH. … 1995, 8:4 p.398

The greater part of measurement is taken up with identifying a variable to be measured and then gathering data dominated by that variable. When, as generally occurs, the data reflect the influence of additional variables, those data show misfit to the Rasch model. When misfit becomes substantial, Rasch analysis of the data becomes increasingly ambiguous. To reduce the difficulty of dealing with such data, "Rasch Dimensional Analysis" (RDA) has been developed to filter out the effects of unwanted dimensions in order to expedite the analysis of a particular variable.

Suppose you have a set of interviews and want to measure the respondents on a liberal/conservative dimension. One approach is to read the interviews and identify a set of liberal and conservative indicators chosen to define an approximately unidimensional variable. But this requires finding the indicators in the interview. You must make multiple separate decisions on which respondent statements reflect liberal or conservative positions, and each of those decisions must be reconciled with your intended variable.

RDA takes a different approach. Instead of seeking multiple indicators that mark a particular dimension, you simply choose two respondents (or items) that you decide represent opposite poles of your target dimension. Then two measurements are estimated for each other respondent (or item). These measures are the distances between that respondent's interview and the interviews of the two polar respondents. Simple geometry converts these distances into measures along the dimension defined by the chosen poles.

There are three steps:
1. Choose two persons (A,B) to define the opposite poles of your dimension of interest using your judgement. These persons should differ dramatically on your target dimension, e.g., liberal/conservative, but otherwise be similar.

2. Estimate the absolute logit distances (R,S) between each respondent (C) and the two polar respondents (A,B) by any convenient method, e.g., for dichotomous coding of interview items, a "Poisson" distance between a pair of respondents is [loge(1+disagreements)]. Similarly estimate the distance (T) between polar persons (A, B).

Pythagoras Theorem

3. Use Pythagoras' theorem to project each person onto your dimension of interest. The result is a measure of the liberality (or conservativeness) of each respondent along the dimension defined by your choice of A and B.

The measure, x, from pole A toward pole B of respondent C is:
x = (T*T + R*R - S*S)/2T

I applied RDA to interviews of 15 political figures influential in Chicago school governance. Respondents were coded according to their opinions on a number of educational issues, but were not asked about their political philosophies. To define a liberal/conservative dimension, I chose as polar reference points a well-known liberal Democrat from the House of Representatives and a staff member of a well-known conservative Republican Senator. A conventional Rasch analysis of these data was unable to separate respondents along any useful dimension.

The results from RDA, however, were clear-cut, as the plot testifies. In the plot, A marks the polar liberal and B the polar conservative. L marks respondents previously thought to be liberal, M respondents previously thought to be moderate, and C respondents previously thought to be conservative. RDA has succeeded in measuring along my bipolar dimension.

Multiple dimension analysis of political views

Rasch dimensional analysis. Moulton MH. … Rasch Measurement Transactions, 1995, 8:4 p.398

Please help with Standard Dataset 4: Andrich Rating Scale Model

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

www.rasch.org welcomes your comments:

Your email address (if you want us to reply):


ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Sept. 15-16, 2017, Fri.-Sat. IOMC 2017: International Outcome Measurement Conference, Chicago, jampress.org/iomc2017.htm
Oct. 13 - Nov. 10, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Oct. 25-27, 2017, Wed.-Fri. In-person workshop: Applying the Rasch Model hands-on introductory workshop, Melbourne, Australia (T. Bond, B&FSteps), Announcement
Jan. 5 - Feb. 2, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 10-16, 2018, Wed.-Tues. In-person workshop: Advanced Course in Rasch Measurement Theory and the application of RUMM2030, Perth, Australia (D. Andrich), Announcement
Jan. 17-19, 2018, Wed.-Fri. Rasch Conference: Seventh International Conference on Probabilistic Models for Measurement, Matilda Bay Club, Perth, Australia, Website
April 13-17, 2018, Fri.-Tues. AERA, New York, NY, www.aera.net
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
The HTML to add "Coming Rasch-related Events" to your webpage is:
<script type="text/javascript" src="https://www.rasch.org/events.txt"></script>


The URL of this page is www.rasch.org/rmt/rmt84h.htm

Website: www.rasch.org/rmt/contents.htm