Choosing Sample Distributions

person distribution (linearized gamma)
Sample distributions bear a paradoxical relationship to measurement. On the one hand, they often simplify estimation or may even be required to make estimation possible. On the other hand, surely my measure should not depend on the distribution of the sample I happen to be measured with! It is clearly preferable,whenever possible, to use estimation methods that do not require person or item distributions to be specified.

The simplest sample distribution is the point distribution, hypothesizing a fixed effect. Everyone is thought to have the same amount of the attribute - but how much? Many attitude surveys are conceptualized this way. See RMT 5:4 p. 188 for an example using log-linear and one-facet logit-linear Rasch models.

When a population is thought to be represented by a central value, but individuals differ from that value in innumerable ways, each constituting a small amount, then the normal distribution is often chosen. ANOVA techniques use the normal distribution implicitly, usually without any type of fit test. The degree to which the normal distribution can simplify estimation is seen in Cohen's PROX algorithm which obtains a direct analytical solution in a situation that usually requires a non-linear, iterative approach (RMT 8:3 p. 378). Marginal maximum likelihood (MMLE) methods employ the normal distribution, sometimes to simplify estimation, sometimes to make it possible. Thus, for the 2- and 3-parameter IRT methods, a normal (or other) distribution must always be specified.

Some sample distributions are chosen strictly on their mathematical properties regardless of the empirical sample distribution. If a global test yields some degree of model-to-data fit, then the chosen distribution is accepted as representing that sample distribution. Thus, van Duijn and Jansen (1995) choose a gamma distribution for their subjects and a Dirichlet distribution for their items, becausethese produce a tractable marginal maximum likelihood estimation function for theirPoisson count data. The Figure depicts the modeled ability distributions of the pupils in their three reading-method groups.

Actual distributions can be skewed, squashed, lumpy,... Before investing effort in the analysis or estimation of a particular mathematical distribution function, it is wise to rough out histograms of the person and item score distributions (on semi-loge paper if the data are Poisson counts). Then make an informed choice of distribution. For instance, if the data are seen to be multimodal, then a uniform distribution is probably a better choice than a normal distribution (see Wright & Stone's Best Test Design p. 145 ff. for computer-free use of the uniform distribution). Once the computer has printed estimates based on your selected distribution, it is hard to admit to oneself that one has made a poor, or even misleading, choice of distribution(See RMT 5:3 p.172 for an example of how easy it is to convince oneself that a particular distribution's shape is "correct").

John M. Linacre

Van Duijn M.A.J., Jansen M.G.H. (1995) Modeling repeated count data: some extensions of the Rasch Poisson Counts model. Journal of Educational and Behavioral Statistics 20:3, 241-258.

Linacre J.M. (1996) Choosing sample distributions. Rasch Measurement Transactions 10:2 p. 503


Choosing sample distributions. Linacre J.M. … Rasch Measurement Transactions, 1996, 10:2 p. 503



Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
Rasch Books and Publications: Winsteps and Facets
Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Rasch Models for Solving Measurement Problems (Facets), George Engelhard, Jr. & Jue Wang Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

www.rasch.org welcomes your comments:

Your email address (if you want us to reply):

 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt102f.htm

Website: www.rasch.org/rmt/contents.htm