Thomas Warm (1989) reports that "Lord (1983) found that maximum likelihood estimates of θ [person ability] are biased outward" and then he restates Lord's expression for the size of this bias:
Bias (θMLE) = - J / ( 2 * I2 )
where, for dichotomous Rasch items,
J = Σ Pθi (1-Pθi ) (1-2Pθi )
I = Σ Pθi (1-Pθi )
summed for all items, i = 1,L in the test, where Pθi is the Rasch-model probability of success of ability θ on item i.
The corrected estimate, θWLE = θMLE + (J / ( 2 * I2 ) ), which is almost always closer to the item mean than θMLE.
How effective is this bias correction? Warm uses a Monte Carlo study to demonstrate its effectiveness, but an exact algebraic investigation can be conducted.
Dichotomous Items
I posited a test of 25 items, with its item difficulties uniformly spaced 0.2 logits apart. Figure 1 shows the locations (x-axis) of the items on the 25-item test. The item difficulties are centered on 0 logits.
Applying the MLE method of Wright & Douglas (1996) for estimating θ from known item difficulties, a Rasch ability estimate, M(s) is obtained for each possible raw score, s=0-25, on the test of 25 items. Since the estimates corresponding to s=0 and s=25 are infinite, they are substituted by estimates corresponding to s=0.3 and s=24.7 score-points. The MLE ability estimates are shown in Figure 1.
![]() Figure 1. MLE and WLE for 25 dichotomous items. |
![]() Figure 2. Detail of Figure 1 showing MLE bias. |
![]() Figure 3. MLE and WLE for 12, 4-category, items. |
Rasch Publications | ||||
---|---|---|---|---|
Rasch Measurement Transactions (free, online) | Rasch Measurement research papers (free, online) | Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch | Applying the Rasch Model 3rd. Ed., Bond & Fox | Best Test Design, Wright & Stone |
Rating Scale Analysis, Wright & Masters | Introduction to Rasch Measurement, E. Smith & R. Smith | Introduction to Many-Facet Rasch Measurement, Thomas Eckes | Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. | Statistical Analyses for Language Testers, Rita Green |
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar | Journal of Applied Measurement | Rasch models for measurement, David Andrich | Constructing Measures, Mark Wilson | Rasch Analysis in the Human Sciences, Boone, Stave, Yale |
in Spanish: | Análisis de Rasch para todos, Agustín Tristán | Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez |
Forum | Rasch Measurement Forum to discuss any Rasch-related topic |
Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement
Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.
Coming Rasch-related Events | |
---|---|
June 23 - July 21, 2023, Fri.-Fri. | On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com |
Aug. 11 - Sept. 8, 2023, Fri.-Fri. | On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com |
The URL of this page is www.rasch.org/rmt/rmt231d.htm
Website: www.rasch.org/rmt/contents.htm