# The Item Discrimination Index: Does it Work?

The widely-used item discrimination index reports the difference between the proportions of high and low scorers answering a dichotomous item correctly. High values are reputed to flag good items, low values bad.

Following the conventional approach, we extract from the sample G of persons two equal-sized subgroups, the high scorers UG (Upper group) and the low scorers LG (Lower group). Typically, following Kelley (1939), the distribution of persons is treated as normal and UG and LG are the upper and lower 27%. (For other sub-groupings, see Tristan, 1995.) Then the item discrimination index is d = p(UG) - p(LG), where p(UG) and p(LG) are the proportions of correct answers by UG and LG respectively. The maximum value of d, Max(d), is 1.0 and occurs when all the UG group succeed and all the LG group fail on an item.

The easiness of an item for the whole sample is its p-value, p(G). This limits the value of Max(d). When 0.27 < p(G) < 0.73, i.e., when between 27% and 73% of the sample succeed, then the highest possible discrimination occurs when all the upper group succeed, i.e., p(UG) = 1.0, and all the lower group fail, i.e., p(LG) = 0, so that Max(d) = 1.0.

When p(G) < 0.27, then the item is most discriminating when p(LG)=0 and p(UG) = p(G)/0.27, so that Max(d) = p(G)/0.27. Similarly, when p(G) > 0.73, Max(d) = (1 - p(G))/.27. An item is not discriminating when p(LG) = p(UG) = p(G). Since negatively discriminating items contradict the test as a whole, they are eliminated. Figure 1 shows the possible values for d and p(G) for positively discriminating items.

Under Rasch model conditions, expected values of d can be estimated for different normally distributed samples of persons. Figure 2 is a nomograph of these values. For example, when the sample mean ability is 1.5 logits above the item, and the sample standard deviation is 2.0 logits (at arrow in Figure), the expected p-value is 0.72 and item discrimination index is 0.66. When data overfit the Rasch model, i.e., approach Guttman conditions, then d values will be higher than shown. When data are noisy, d values will be lower.

From the nomograph it can be seen that, when the sample is narrow or off-target, the expected item discrimination index is low, indicating that interpretation of these d values is always problematic. In fact, Rasch item discriminations (the slopes of the ogives) are the same for all samples, so these d values are descriptive of the samples, not the items. It is deviation from these d values that flag problem items.

Dr. Agustin Tristan Lopez
CENEVAL, Mexico

Kelley T.L. (1939) The selection of upper and lower groups for the validation of test items. Journal of Educational Psychology, 30, 17-24.

Tristan L.A. (1995) Model for computer-aided item analysis. (In Spanish). Foro Nacional de Evaluacion Educativa, Mexico: CENEVAL. pp. 45-68

1. The Item Discrimination Index: Does it Work? Tristan Lopez A. … Rasch Measurement Transactions, 1998, 12:1 p. 626
2. BICAL item discrimination index. Wright BD, Mead RJ, Bell SR. … Rasch Measurement Transactions, 2002, 16:1 p.869
3. Item Discrimination Indices. Kelley T., Ebel R., Linacre, JM. … Rasch Measurement Transactions, 2002, 16:3 p.883-4
4. Discrimination, Guessing and Carelessness Asymptotes: Estimating IRT Parameters with Rasch. Linacre J.M. … Rasch Measurement Transactions, 2004, 18:1 p.959-960

The Item Discrimination Index: Does it Work? Tristan Lopez A. … Rasch Measurement Transactions, 1998, 12:1 p. 626.

Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
Rasch Books and Publications: Winsteps and Facets
Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Rasch Models for Solving Measurement Problems (Facets), George Engelhard, Jr. & Jue Wang Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
May 17 - June 21, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 12 - 14, 2024, Wed.-Fri. 1st Scandinavian Applied Measurement Conference, Kristianstad University, Kristianstad, Sweden http://www.hkr.se/samc2024
June 21 - July 19, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 5 - Aug. 6, 2024, Fri.-Fri. 2024 Inaugural Conference of the Society for the Study of Measurement (Berkeley, CA), Call for Proposals
Aug. 9 - Sept. 6, 2024, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com