Rasch Model derived from Ratio-Scale Counts

Your ability is not merely the number of your successes. If it was, the longer the test, the more successes you would have, and so the greater your ability!

If your ability was (number of successes - number of failures) and you were succeeding more than half the time, then the longer the test, the greater your ability!

So we define your ability as the "number of your successes / the number of your failures".

We are comparing counts of successes and failures. These are the manifestations of probabilities of success and failure. So
Your ability = Prob(your success on a standard item) / Prob(your failure on a standard item)

Similarly
Item's difficulty = Prob (standard person fails on item)/ Prob(standard person succeeds on item)

So when we want to know how likely you (a particular member of the sample) are to succeed on a particular item (belonging to the test), we combine these these two probability ratios multiplicatively. This is how Georg Rasch originally did it. For convenience we say that a standard person has a .5 probability of succeeding on a standard item.

(Probability of your success an a particular item / Probability of failure) = (your ability) / (difficulty of particular item)

But we quickly discover that multiplication is much more difficult to organize and explain than addition. And the method of replacing multiplication and division by addition and subtraction is to take the logarithms. Then
loge((Probability of success / Probability of failure)) = loge(ability) - loge(difficulty) = Ability - Difficulty
This is the Rasch model!

Test performance can be viewed in two ways:
1) Person ability is indicated by the count of items on which the person succeeds, the person's raw score, R (for "right direction").
2) Test difficulty is indicated by the number of items which the person fails to pass, W (for "wrong direction").

As a first approximation, R follows a ratio scale in which "0" corresponds to an "absolute zero" of person ability. "1" is one ratio unit of ability away from this absolute zero. W also follows a ratio scale, in which "0" corresponds to an "absolute zero" of test difficulty. Ratio scales convert to a linear form by logarithms. Thus, loge(R) linearizes the ability count of the person and loge(W) linearizes the difficulty count of the test. This relationship between ratio and linear scales can be put to work by representing a person's measure on a linear scale of ability as B = loge(R) and a test's difficulty on the same linear scale as D = loge(W). [This parallels Georg Rasch's use of the Poisson distribution, "Probabilistic Models", p. xvii]

Person ability, B, is only observed when the person encounters a test with difficulty, D. The useful relationship for a measurement model is the difference (B-D) between person ability, B, and the test difficulty, D. This parametric difference is realized empirically by the difference between their corresponding linearized manifestations, loge(R) and loge(W). Thus,

B - D = loge(R) - loge(W) = loge(R/W)

This simple formulation opens the way to a general measurement model. First, the situation-specific statements about actual values of particular data, R and W, are reformulated into a more general statement about probabilities, the probabilities of whatever success may be earned by whatever persons on whatever items the test may contain. To do this, person score R is replaced by the probability of success, Pni, by particular person n on particular item i. Test score W is replaced by the probability, 1-Pni, of failure by that person n on that item i:

loge[Pni/(1-Pni)] = Bn - Di

The outcome of these simple steps is the necessary and sufficient measurement model for converting raw scores based on dichotomous, "pass/fail", observations into measures, as Georg Rasch discovered.


Rasch Model derived from Ratio-Scale Counts, B Wright … Rasch Measurement Transactions, 1992, 6:2 p. 219


  1. The Rasch Model derived from E. L. Thorndike's 1904 Criteria, Thorndike, E.L.; Linacre, J.M. … 2000, 14:3 p.763
  2. Rasch model derived from consistent stochastic Guttman ordering, Roskam EE, Jansen PGW. … 6:3 p.232
  3. Rasch model derived from Counts of Right and Wrong Answers, Wright BD. … 6:2 p.219
  4. Rasch model derived from counting right answers: raw Scores as sufficient statistics, Wright BD. … 1989, 3:2 p.62
  5. Rasch model derived from Thurstone's scaling requirements, Wright B.D. … 1988, 2:1 p. 13-4.
  6. Rasch model derived from Campbell concatenation: additivity, interval scaling, Wright B.D. … 1988, 2:1 p. 16.
  7. Dichotomous Rasch model derived from specific objectivity, Wright BD, Linacre JM. … 1987, 1:1 p.5-6



Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
Rasch Books and Publications: Winsteps and Facets
Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Rasch Models for Solving Measurement Problems (Facets), George Engelhard, Jr. & Jue Wang Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

www.rasch.org welcomes your comments:

Your email address (if you want us to reply):

 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt62c.htm

Website: www.rasch.org/rmt/contents.htm